Objective Tests as Instruments of Psychological Theory

JANE LOEVINER

Chapter 5

The central concepts of classical test theory are reliability and validity. The concept of reliability was criticized from the beginning, and at present the most widely accepted view appears to be that what was formerly called reliability encompasses two independent components, homogeneity and stability. The notion of validity as correlation with an outside criterion appeared to be a simpler and less vulnerable concept than reliability, however difficult it was to obtain adequate criteria. The rather sudden appearance of the term “construct validity” indicates that the second concept of classical test theory is undergoing criticism and revision.

The purposes of the present monograph are:

(a) to celebrate the extension of the concept of validity as an indication that psychometrics is recognized as truly the handmaiden of psychology rather than merely of psychotechnology;

(b) to argue that, since predictive, concurrent, and content validities are all essentially ad hoc, construct validity is the whole of validity from a scientific point of view;

(c) to analyze the components of construct validity, in particular propos-

EXTENSION OF T

Because of the classical concept been many att
fine validity in recognition that initially different requires an ide
The term con by the APA C Tests, which de
mendations for Diagnostic Teci was suggested posed of Mec expounded late 20 in a pa
fully the histor
sustances wh
contributions\nObviously, the me
the best in cu
by Cronbach a
ing "structural component" as name for a previously only partly recognized aspect; and
(d) to relate secular trends in test behavior to the validity problem.

The presentation of these and related topics as a single monograph has an overiding purpose: to develop a coherent view of psychometrics, a mutually implicating test theory and method of test construction. Many current lines of research in psychometrics are discussed, either as contributing to or as contrasting with the present system. It would be unjust, however, to read the monograph as a review of psychometric literature. No attempt is made to evaluate any contribution or any line of work in toto, nor is inclusive coverage of current literature sought. If the exposition appears to claim that only the present view is admissible, that is an artifact of the argument, not an expression of belief or intention.

EXTENSION OF THE CONCEPT OF VALIDITY

Because of the difficulties to which the classical concept of validity led, there have been many attempts to modify and redefine validity in recent years, culminating in recognition that the new concept is essentially different from classical validity and requires an identifying name.

The term construct validity was proposed by the APA Committee on Psychological Tests, which drew up the Technical Recommendations for Psychological Tests and Diagnostic Techniques [121]. The concept was suggested by a subcommittee composed of Meehl and Challiman. It was expounded later by Cronbach and Meehl [20] in a paper which reviewed more fully the history of the concept. The circumstances which gave rise to these two contributions were somewhat restrictive. Obviously, the official Technical Recommendations were constrained to approve the best in current practice, and the paper by Cronbach and Meehl grew out of that endeavor. The present monograph, being without official sanction or origin, is in position to take advantage of the work done by official committees and by Cronbach and Meehl but also to propose a more radical reformulation of the validity problem. This reformulation is not intended chiefly as criticism of the previous excellent contributions. The organization of the present monograph follows approximately that of Peak's chapter on objective tests [92], which Cronbach and Meehl also acknowledge as their closest predecessor. The province is large; specific overlap with Peak and with Cronbach and Meehl will therefore be avoided.

A. CRITIQUE OF CLASSICAL VALIDITY CONCEPT

Validity has often been defined as the extent to which a test measures what it is supposed to measure. This definition is too vague, too remote from actual measuring operations, to be useful; it is consistent with all the current meanings of validity. What will be referred to as the classical definition of validity is the one which by far predominates in psychometric literature, to wit, correlation with a criterion.

What the Technical Recommendations [121] call predictive and concurrent validities seems indistinguishable from what Peak [92] calls "blindly empirical validity" and is exactly the classical conception of validity in test theory. Surely no one will dispute the legitimacy of computing a validity coefficient for an existing test in reference to a situation where it is deemed a suitable predictive or discriminative device. The contention of the present monograph is that classical validity is not a suitable basic concept for test theory; it does not provide an adequate basis for test construction.

The classical definition of validity has been stated:

The validity of a test is the correlation of the test with some criterion. In this
sense a test has a great many different "validities." For example, the ACE Psychological Examination has one validity for predicting grades in English and a different validity for predicting grades in Latin. It is also found in studying various validity coefficients for a given test that they vary from school to school, and from time to time. In other words, validity cannot be regarded as a fixed or unitary characteristic of a test. As new uses for a test are contemplated, new validity coefficients must be determined; and, when use of a test is continued, the validity coefficients must be redetermined at intervals [48, p. 88].

The above quotation is the essence of the single paragraph devoted to the "Meaning of validity" in Gulliksen's text on test theory.

Meehl and Rosen [89], in a review of current uses of predictive and concurrent validity coefficients, have carried further the demonstration of the specificity of classical validity. They are particularly concerned with the case where the criterion to be predicted is a dichotomous one. In such prediction, or discrimination, there are two possible errors: one can select an individual who should not be selected or reject an individual who should not be rejected, meaning by selection and rejection no more than assignment to the two distinguished groups.

The dichotomous criterion is particularly important for test theory, for one of the commonest methods of test construction is to select those items which best distinguish two groups believed to differ with respect to the dimension to be measured. In this kind of empirical keying, the ability of an item to discriminate the two criterion groups is the chief or only basis for its inclusion in the test.

Three different cases of dichotomous criteria must be distinguished. A truly dichotomous criterion is one which is not reasonably conceived as two extremes of a continuum. Examples are not easy to find. One possibility is a series of patients all of whom complain of headaches; the problem is to separate those whose complaint is at least partly organic from those whose symptoms are entirely psychogenic. Again, of all patients discharged from a mental hospital, those readmitted and those not readmitted are substantially distinct groups.

A second case might be referred to as a dichotomized criterion. Here the problem is to predict which individuals fall above a given cutting score in an essentially continuous criterion. In studies done in a military setting, passing or failing a given course of study is often the criterion to be predicted. Presumably the course grades initially fall into a more or less continuous distribution. While passing or failing a course is in a way similar to being readmitted to a mental hospital or not, the cutting point between "pass" and "fail" seems less arbitrary, less subject to administrative whim, in the case of hospital readmission.

In a third case, and probably the most common one, an essentially continuous distribution is being measured and the test is expected ultimately to discriminate throughout its range. For item selection, however, only individuals at the two extremes of the distribution are used.

Consider the first case, a truly dichotomous criterion. Meehl and Rosen [89] have shown that validity measured in terms of false positives and false negatives is altered when nothing changes except the proportion of true positives and true negatives. The optimal cutting score depends on the proportions in the two groups, and for this reason they advocate that an inflexible cutting score not be set for any psychometric device. Merely changing the proportion in the two groups without any alteration in the nature of the individuals included should not affect item choice, however, when items are chosen according to their ability to discriminate the groups.

Consider now the second case, the dichotomized criterion. Any change in administrative conditions which leads to shifting the cutting point on the criterion will not only alter the validity of the total test and shift the optimal cutting score on the test, it will affect the criterion of the test.
those whose complaint is at
jective tests as instruments of psychological theory

ose whose complaint is at
office grades not, the cut-

y measured in terms of false negatives is altered

s the proportion in

Is that an inflexible cut-

ing the proportion in

to any alteration in

s item choice, however,

the groups.

second case, the

sion. Any change in

ions which leads to

point on the criterion

validity of the total

mal cutting score on

the test; it will also change the composition of
of the criterion groups. Thus, discriminative
powers of the items will be differentially
affected. In general, some items will be
more valid and some less. A test
whose items are selected to be those with
optimal validity one year will not have
optimally valid items in later years if the
cut between pass and fail has changed.
Lord [76] and Groveback and Warrington
[21] have contributed papers on one rele-
vant point, the dependence of the optimal
item difficulty on the criterion cutting point.
In the third case, where only the ex-
remes of the distribution are used to estab-
lish the validity of the items, considerations
similar to those of the second case prevail.
It has been demonstrated in a number of
papers [71] that for the situation most
usual in psychological testing, i.e., low item
intercorrelations, optimal item difficulty is
approximately at the median of the distri-
bution. Where only the extremes of the dis-
tribution are used to test item validity,
sufficient evidence in regard to item dif-
ficulty is obtained. It should be noted, too,
that apart from the problem of item dif-
ficulty, knowledge of the ability of the item
to discriminate the extremes of a distribu-
tion is not substitutable for knowledge of
how accurately it discriminates near the
median.

Now a serious test construction project
is an arduous and expensive business. No
one recommends attempting to construct
and standardize tests except on the basis
of large samples representative of some
specifiable population. Major test construc-
tion is rarely if ever undertaken with the
intention of putting a test to a single use.
Meehl and Rosen [89] show, however,
that even when the administrative or clinical
setting remains unaltered in other
respects, if the test is used in a slightly
different manner, the validity is altered.
They give as an example the use of a
neuropsychiatric screening test by the
Army. If a test is constructed to predict
which inductees will later be given neu-
ropsychiatric discharges, it is not thereby
validated for selecting inductees. A test
constructed to select those draftees for
whom examination by a psychiatrist is
desirable prior to induction is not thereby
validated as a selection instrument for the
draftees for whom psychiatrists have
difficulty in making a decision to induct into
the Army. Such changes in test utilization
involve changes in the composition of crite-

J. D. U. S. A. } 81

rion groups, even though the trait to be
measured and the criterion cutting point
remain the same. Not only the validity
coefficient and the optimal cutting score
but also item validities are affected by such
changes. A scale selected to discriminate
hysterics from normals would be quite dif-
ferent from a scale selected to discriminate
hysterics from early schizophrenics.

In short, it is difficult to discover any
circumstances under which the classical
concept of validity is a suitable basis for
test construction. Military situations where
large numbers of men are processed in
short periods of time offer the most promis-
ing possibility of an administrative setting
stable enough to justify test construction
on the basis of classical validity. But it is
well known that administrative fiat can
change radically a selection per cent with-
out advance warning. Indeed, apart from
any such argument as the foregoing, many
tests devised in the military situation have
been declared obsolete before they were
completed.

Since expositions of test theory such as
Gulliksen's [43] Theory of Mental Tests
devote far more space to reliability than
to validity, it may be charged that arguing
against classical validity as the basic con-
cept of test theory is to attack a straw man.
But reliability as a central concept also
leads to problems and contradictions, some
of which the writer has called attention to
previously [69, 71] and some of which will
be discussed under Secular Trends in Tests
Behavior, below. In consideration of such
problems Brogden [5], among others, ar-
gued that validity rather than reliability is
the central concept of test theory. In this
respect it is interesting to contrast Gul-
liksen’s text with the Technical Recommendations, where the former is devoted predominantly to reliability theory with validity given only minor emphasis, the more recent official publication devotes about three times the space to validity that it does to reliability.

Lord strongly defends the importance of specific validity, stating that the concept of overall validity “is not basic to psychometrics. The discriminating power of the test for a specified decision problem regarding a specified examinee is the truly basic concept” [78, p. 509]. Lord’s view will be seen to represent the opposite pole from that represented by the present monograph.

A strong proponent of the present view is Cattell, who has written:

Particularized validation is not only devoid of proper scientific interest but deceptive in its promise of practical economy. . . . Its absurdity is most cogently argued by the demands of practical economy and efficiency alone; for a specific test for every occupation and life situation is its logical and impossible conclusion [11, pp. 549–550].

The writer believes that the most fruitful direction for the development of psychometric devices, and hence of psychometric theory, is toward measurement of traits which have real existence in some sense; that this orientation is antithetical to one which places first emphasis on prediction, decisions, or “utility”; that most decision-oriented psychometric studies would be more fruitfully formulated as trait-oriented studies; and that such legitimately pressing decisions as must inevitably be made will also best be served by a predominantly trait-oriented psychometrics.

An economist, Jacob Marschak, has stated the argument concisely:

Theory provides us with solutions which are potentially useful for a large class of decisions. It is welcome because we cannot foresee which particular decisions we shall have to take. Our decisions may or may not be such as to leave certain properties of the system unchanged. Hence, the more we know about its properties the better. If we merely want to know how long it takes to boil an egg, the best is to boil one or two without going into the chemistry of protein molecules. The need for chemistry is due to our want to do other and new things [82, p. 214].

The argument against classical criterion-oriented psychometrics is thus two-fold: it contributes no more to the science of psychology than rules for boiling an egg contribute to the science of chemistry. And the number of genuine egg-boiling decisions which clinicians and psychotechnologists face is small compared with the number of situations where a deeper knowledge of psychological theory would be helpful. This argument challenges Mehl’s [88] plea for a good clinical cookbook and Cronbach’s [18] advocacy of decision and utility theory.

B. CONSTRUCT VALIDITY: ELUCIDATION OF TERMS

As originally proposed, construct validity was one of four kinds of validity, the other three being content, predictive, and concurrent validities. Predictive and concurrent validities are, following the above argument, ad hoc. Content validity is established by the judgment of the investigator that the items are valid; it is thus also contingent upon a special, non-generalizable circumstance, to wit, the particular investigator. (But see the fuller discussion of content validity under Components of Construct Validity, A, below.) Since ad hoc arguments are scientifically of minor importance, if not actually inadmissible, what is left, construct validity, is the whole of the subject from a systematic, scientific point of view.

Thus, in place of the classification of validity proposed in the Technical Recommendations, it is here recommended that two basic contexts for defining validity be recognized, administrative and scientific. There are essentially two kinds of administrative validity, concurrent. The validity which transposability or in administratively valid, touchstone of construct validity.

Neither the To nor Cronbach’s definition of con- mer paper the t follows: “Constric- investigating a test measures, certain explana- some degree for . . . Essentially validity we are vy ing the test” [:

Cronbach an the term was: “volved whenever a measure or which is not a problem faced by constructs account for?” [20]

The proponents validity have, their philosophi a term less per pealing than a be, such as, there are indi structure among general or cen ogists who do apparent star of generalizatio to have acqui comutations to ful distinction Mehl [81] has variables and terms of degr data, was per but assigning place in perso extrapolation I

A dictionary
the more we know the better. If we work long it takes a lot to boil one or into the chemistry of the need for chemistry to do other and 4). A classical criterion is thus two-fold: it to the science of psychological and egg boiling an egg of chemistry. And the egg boiling decisions and psychotechnical compared with the is where a deeper logical theory would argue challenges a good clinical cook's [18] advocacy of theory.

DITY: RMS

sed, construct validity is of validity, the other predictive, and congeneric and concurrent following the above intent validity is established, what is, is the whole of the scientific point

If the classification of the Technical Recomm is: "Something constructed; specif., Psychol., an intellectual synthesis." In the present paper both construct and trait are used in their general or dictionary meanings. Connotations of depth, level, or locus are specifically disclaimed. Traits exist in people; constructs (here usually about traits) exist in the minds and magazines of psychologists. People have constructs too, but that is outside the present scope.

Construct connotes construction and artifice; yet what is at issue is validity with respect to exactly what the psychologist does not construct: the validity of the test as a measure of traits which exist prior to and independently of the psychologist's act of measuring. It is true that psychologists never know traits directly but only through the glass of their constructs, but the data to be judged are manifestations of traits, not manifestations of constructs. Cronbach and Meehl and their colleagues on the APA committee appear reluctant to assign reality to constructs or traits. Considering traits as real is, in the present view, a working stance and not a philosophical tenet.

That the distinction made here between traits and constructs is free of metaphysical implications is seen by comparing it to the familiar distinction between parameter and statistic. The parameter is what we aim to estimate, the corresponding statistic represents our current best estimate of it. Just so, the trait is what we aim to understand, and the corresponding construct represents our current best understanding of it. The distinction between trait and construct can be dispensed with no better than the distinction between parameter and statistic.

Thus, in conceptualizing the problem of validity I find myself far from the naively operational but actually ad hoc reasoning of traditional discussions of validity, but objecting to the confusion of constructs and traits which may be read into the term construct validity. With this understanding, the subject of the present monograph is construct validity.

Three elements are involved, the test, the traits measured, and what the tester says
the test measures (construct, interpretation, theory). With three elements, two independent relationships can be specified. This can be done two quite different ways. The Technical Recommendations [121, p. 15] imply that the two questions subsumed under construct validity are: to what extent does the test measure whatever is specified by a given construct? And, to what extent does that construct embody a valid hypothesis? An alternative formulation of the two relationships is: to what extent does the test measure a trait that "really" exists? And, how well does the proposed interpretation correspond to what is measured by the test?

The former pair of questions divides construct validity into the validity of the test for the construct and the validity of the construct. Cronbach and Meehl, followingPeak, state that what is at stake is usually both, that the evidence for the two kinds of validity is usually not separable, except where either the test or the construct has been established over a long period of time.

The latter pair of questions divides the topic into the intrinsic validity of the test and the validity of the interpretation, though for practical purposes validity usually would also cover validity of the interpretation. The superiority of the latter formulation lies in the fact that information under the two headings comes somewhat separately. (This discussion is not intended to imply that the actual process of test construction should follow such a separation.) The magnitude of the interrelationships of the items among themselves and the magnitude of the highest external correlations of the test score are evidence that something systematic is being measured. The content of the items, the nature of their interrelationships, and the nature of the outside variables showing varying degrees of interrelationship with the test score are relevant to proposed interpretations. The former set of relations may be thought of as giving psychometric meaning to the test, the latter as giving its psychological meaning.

Cronbach and Meehl are led by their adherence to the former pair of questions to state, "A consumer of the test who rejects the author's theory cannot accept the author's validation. He must validate the test for himself, if he wishes to show that it represents the construct as he defines it" [20, p. 291]. Do they mean that validational studies are communicable only among such coteries as are agreed on theoretical issues? Such a stand assigns a very minor role to tests as instruments for the development of theory.

Suppose I claim that I can measure "Strength of the tendency to repress the Oedipus complex." Any psychologist can reject the title of the test and therewith the interpretation, since both are based on what Cronbach and Meehl call a "nomological network" which extends beyond the test validation enterprise. But any evidence for the cohesion of the various items or for the predictive power of the test is public and not contingent on acceptance of psychoanalytic theory. Someone with a different theoretical outlook can reject the proffered interpretation, but he cannot reject at the same time whatever evidence there is of something to be interpreted.

From a practical view, whichever pair of questions is asked, both must be answered. A clinician gets no help from a highly valid test which he cannot interpret. Test theory must make provision for answering both questions. In the remainder of this paper validity will be taken to cover both the extent to which a test measures anything and the validity of its interpretation.

RELATION OF TEST BEHAVIOR TO THEORY

A. TEST RESPONSES AS SIGNS AND AS SAMPLES

Although the view of test behavior espoused here is somewhat different from that of Goodenough [37, Ch. 7], her terminology is useful in describing it. The present view is that responses to items are always and essentially both signs and samples of behavior test responses as that they represent presence of trait which they did to test responses was describing te essentially similar is desired to prec items of every samples. One if unless one could behavior be behavior. In thi have the charact

In principle, represented in kinds of actions as indicators of certain as their signals. sensitive indica short be called. It means reason festations of a share some of t festations of the reference of ev gotten. The meanings of every about the value structured, pur
One of the a is to determine to find the trait Unfortunately of this ent

day forms can be classified. Their study of behav unambiguously for can be sol items. Because know about b test behavior.
former pair of questions: the test who rejects the hypothesis cannot accept the
he wishes to show that the construct as he defines it ‘mean that validational
ous only among such sean on theoretical issues.
s a very minor role to its for the development

n that I can measure the tendency to repress the
Any psychologist can test and therewith the
both are based on d Mehl call a “homo-
prise. But any evidence the various items or for
er of the test is public at on acceptance of
ry. Someone with a dif-
ction, but he cannot re-
over evidence is to be interpreted.
view, whichever pair
, both must be an-
gets no help from a
ch he cannot interpret.
ake provision for ac-
on. In the remainder
will be taken to cover
which a test measures
ality of its interpre-

-VAIOR TO THEORY
AS SIGNS

of test behavior that different from
7, her term-
scribing it. The pres-
penses to items are
ly both signs and
samples of behavior. In referring to some
test responses as signs, Goodenough meant
that they represented and indicated the
ance of traits and of other behavior
which they did not resemble. In referring
to test responses as samples, Goodenough
was describing tests in which the items are
esentially similar to the behavior which it
is desired to predict. In a literal sense, the
items of every test are both signs and
samples. One would not give a test at all
less one could make inferences from test
behavior to behavior outside the test situa-
tion. This representative quality is the
whole reason for giving tests, as Good-
ough implied [37, p. 102]. At the same
time, test behavior is behavior and must be
summarized by the same laws and be
determined by the same factors as other
behavior. In this sense, all test responses
have the character of a sample of behavior.

In principle, every trait of a person is
represented in each of his actions. Some
kinds of actions are such insensitive indi-
cators of certain traits as to be worthless
as their signals. If an action is an extremely
sensitive indicator of a trait, it may be
short be called a manifestation of that trait.
It seems reasonable to assume that mani-
festations of a trait in a test situation will
share some of the properties of other mani-
festations of the same trait. The multiple
reference of every action must not be for-
gotten. The many sources and many mean-
ings of every response induce scepticism
about the value of searching for rigorously
structured, pure, unidimensional patterns.

One of the aims of psychological theory
is to determine the structure of personality,
to find the traits which determine behavior.
Unfortunately for the simplicity and suc-
cess of this enterprise, behavior in its every-
day forms cannot be uniquely itemized and
classified. There are no natural units for the
study of behavior. The problem of discrete,
unambiguously identifiable units of behav-
ior can be solved by use of objective test
items. Because tests are samples, what we
know about behavior in general applies to
test behavior. Because tests are signs, what
we learn from tests can help structure and
interpret knowledge of other, more amorph-
ous behavior.

The problem then becomes one of find-
ing items which are sensitive signs of those
areas of behavior which are significant for
practical and for theoretical purposes. This
has proved somewhat easier with respect
to abilities than with respect to personality.
The present concern is therefore mainly
with personality tests, but much of what is
said could be applied with slight change to
ability tests. What is required might be
called a “psychology of objective test be-
havior.” There is needed a theory, sup-
ported by data, of what kinds of traits or
what levels of personality can be measured
by different kinds of personality tests.

B. THE PROBLEM OF HOMOGENEITY

There is a bifurcation in test theory. If
the aim of testing is to predict optimally
a single criterion, then any item measuring
aspects of behavior which are related to
that criterion may be included in the test;
such items may be independent of each
other or even negatively correlated, at
least theoretically. Homogeneity of test
content is either ignored or deliberately
eschewed. If, however, tests are conceived
as instruments of psychological theory
rather than as devices of psychotechnology,
then one has to face the considerable
problem of constructing tests which are ho-
ogeneous with respect to some trait. The
present proposal is that the problem of test
homogeneity be viewed in intimate relation
with what is known of the complex causa-
tion of behavior, and of the fact that traits
are manifest in a multiple, alternative, and
at times dialectically opposed manner.

A number of attempts to meet the prob-
lem of homogeneity have been devised on
the basis of a more or less strict logical or
mathematical definition of homogeneity.
The most important of these is Cattell’s
scale analysis. A perfect scale is com-
pored of a set of items such that if A has a
higher rank than B, then A is as high as or
higher than B on every item. Then for each total score there is just one configuration of item responses. Thus, knowing any individual’s score on the test as a whole, one can reproduce each of his answers, a situation obviously different from the usual one in psychological testing. When consideration is restricted to dichotomous items and cumulative tests, that is, tests where each item is scored one or zero and the item scores are added to obtain the total score, a Guttman-type scale is identical with what Loevinger [60] called a perfectly homogeneous test. In this kind of test there is an order of the items such that each individual obtains a score of one on every item up to the one corresponding to his total score and zero on all subsequent items. Scale analysis has come into wide usage in sociology, but the sets of items which prove to be almost perfect scales are usually hardly more than several rephrasings of a single question. They have thus not provided new insights into psychological traits as yet.

Recently Coombs [13] has devised models for conceptualizing completely homogeneous tests. He has propounded a “theory of psychological scaling” which divides psychological tests into two types, which he denotes by Task A and Task B. Tests of ability and expressions of preferences between stimuli illustrate Task A. The judgment of which stimulus has more of some attribute illustrates Task B. In Task A each stimulus and each individual is assumed to have a “scale value”; whether the individual scores plus on an item (agrees, succeeds) depends on whether his scale value is greater than that of the item. The scale value of the individual is assumed to be the same regardless of the item. So far one may be led to suppose that the notion of “scale value” corresponds to such intuitive ideas as ability and trait. However, in Task B the individual is postulated to assume a scale value equal to that of the item as he proceeds from one item to another. Thus it appears that what Coombs calls “scale value” is an arbitrary construct, or set of constructs, which does not correspond closely to intuitive notions about traits.

An interesting feature of Coombs’ system, but one which makes it more recondite, is that he emphasizes a formal similarity between the people taking the test and the items, which he refers to as stimuli. Corresponding to Task A is Dual Task A, and corresponding to Task B is Dual Task B. A test falls in the category of Dual Task A if each stimulus (item) classifies the individual as being above or below the item’s scale value. A test falls in the category of Dual Task B if each item grades the several individuals with respect to each other on an attribute. In Dual Task B the item itself does not have a scale value. Thus an essay question permits sorting individuals with respect to some attribute, but the question itself does not have a scale value. A problem in arithmetic, however, has a scale value which, in effect, each person taking the test measures himself against (Dual Task A).

Hovland and Sherif [57, 96] have pointed out the inconsistency between Thurstone’s method of constructing attitude tests by equal-appearing intervals (Task B) and recent findings concerning influence of personality traits on perception and judgment. They have added data showing the difficulty of isolating the two types of task. Both Edwards [26] and Peak [92] have pointed out that the work of Hovland and Sherif is difficult to integrate with Coombs’ separation of Task A and Task B.

Workers in the field of personality measurement have recognized and struggled for years with the fact that self-reports concerning personality traits are subject to such massive systematic distortion as to make them virtually worthless as direct measurements of personality traits. One of the most promising methods for dealing with this problem lies precisely in the direction of straddling what Coombs calls Task A and Task B, stating preferences between stimuli and judging stimuli with respect to an attribute. Campbell [9] has provided an able review of such indirect
attitude measures. His paradigm for the construction of disguised tests of attitudes is:

\[
\ldots \text{a plausible task, (a) which your respondents will all strive to do well, (b) which is sufficiently difficult or ambiguous to allow individual differences in response, and (c) which can be loaded with content relative to the attitude you seek to measure. Test the responses of individuals for persistent selectivity in performance, for correlated or non-random errors [9, pp. 33-34].}
\]

The Berkeley F-scale [2] is an example of a disguised test calling for pseudo-judgments (Task B) which in fact reflect prejudices (Task A). Examples of items are: “Most people don’t realize how much our lives are controlled by plots hatched in secret places” [2, p. 257]; “The businessman and the manufacturer are much more important to society than the artist and the professor” [2, p. 255]. Other items in the F-scale seem to be within the realm of Task A: “There is hardly anything lower than a person who does not feel a great love, gratitude, and respect for his parents” [2, p. 255]. The decision as to whether this item is purely Task A or contains an admixture of Task B is difficult. The distinction is essential to Coombs’ theory of scaling, since in one case there is zero correlation between scale values of persons and items, in the other case the correlation is unity. Unfortunately, the scale values correspond to no measurable quantities; so no empirical test is available.

Coombs maintains (personal communication) that such data as those of Hovland and Sherif have no bearing on his distinction between Task A and Task B. His system is apparently so abstract that data have no bearing on his assumptions, and certainly intuition gives no clue as to their validity. One cannot help wondering how such a system can make enough contact with reality to contribute to solution of psychological problems. But Coombs aims, no less than does the present monograph, to integrate psychological and psychometric considerations in his work. Faced with data which do not conform to a unidimensional model, Coombs [15, p. 5] points out that one can proceed to a stochastic (probabilistic) model which allows for error, or one can proceed to account for the data in terms of several dimensions. Coombs’ recourse is to multidimensional analysis. But not many more than two or three variables can be handled at a time in this kind of analysis. Coombs has thus equipped us with a kind of analysis which can handle, say, 10 items all of which are completely determined by the same two or three component variables. But where are such items to be found, and how will we know that we have found them? Can we expect anything other than psychological trivialities to turn up in such form?

The problem of making inferences about a single trait from a set of responses all of which are multiply determined is a substantial one. Clinicians, in drawing inferences, are faced with a similar problem. They do not seek aspects of behavior which are determined by a single trait, for there are none. Nor do they seek to analyze all of the many causes of the behaviors they observe. To be confident that one’s multidimensional analysis is complete, there must always be many more behaviors observed than there are component causes, and there is no way to insure obtaining any such situation. The clinician searches for a common theme or thread in behaviors which are superficially diverse. When an item of behavior is viewed as an indication of a trait, all other traits and influences which determine it operate as errors. If the observed behaviors are sufficiently diverse, the errors are uncorrelated and more or less cancel each other out.

This solution carries the implication that inferences about individuals will never be made with certainty but will always carry some probability of error. Since that probability of error can, in appropriate circumstances [72], be made arbitrarily small, the objection is not too serious. This solution is what Coombs and others call “actuarial
measurement”; it stays within the main stream of psychometrics, beginning with Spearman.

C. OBSERVATION PRIOR TO MEASUREMENT

Considerations adduced so far have led to rejection of a single external criterion or of rigid or univocal inter-item relationships as the sole touchstone of psychological measurement. Both prediction and structure will recur later in the discussion as components of construct validity, but they cannot stand alone as guides to test construction, prediction because it changes with every slight change in circumstance, rigid structure because such relationships are not found in the most important areas of psychological measurement. Measurement in psychology is a complex process, requiring correspondingly complicated concepts. The theory of measurement being developed here is germane only to a particular kind of data. It is necessary now to explain that limitation.

The term objective test is used in the present monograph in the sense of structured tests viewed behavioristically. Objective tests are distinguished on the one hand from projective tests and on the other from rating scales. The former distinction relates to item structure. Projective tests involve free response, as do most interviews, while objective tests, in the sense that the term is used here, require in principle that every individual choose one of the stated alternatives for each item. (Speed tests are usually objective, but they are almost as inconvenient statistically as projective tests and are arbitrarily excluded from the present discussion.) Rating scales usually refer to a different person than the one responding. Self-ratings, when the response is scored categorically, are not excluded here from objective tests. Attitude tests, interest tests, and self-rating questionnaires are alike considered objective tests, as are, of course, power tests of ability, since the responses on such tests are viewed here simply as behavior with no automatic ascription of validity to the apparent content. As Campbell [9] has pointed out, in a review which advocates the use of structured disguised tests, the task of validating disguised measures is identical with that of validating apparently undisguised ones. In view of the well-known deviousness of human nature, the safest course appears to be to assume that all tests are disguised. In a direct or undisguised test it is after all only the motives of the investigator, not those of his Ss, which are undisguised. The present use of the term objective tests has coexisted for many years with a contrary usage which contrasts objective tests and questionnaires.

The requirement of objectivity imposes on us a behavioristic attitude towards the psychological meaning of test responses; equally it implies restrictions on the psychometric meaning of responses. Although many of the considerations of the present paper may apply more widely, the discussion will be directly concerned only with dichotomous items for reasons which are by no means arbitrary or trivial. Most of test theory, indeed, has been worked out for dichotomous items, but the justification, if any, has been chiefly statistical simplicity and convenience.

An alternative to dichotomous items is Likert-type items. For such items an extreme statement is presented together with a rating scale, often having between four and seven points. S may be required to check, for example, one of the following, "Strongly agree,” “Agree,” “Disagree,” or “Strongly disagree.” Very often arbitrary scores will be assigned to the alternatives, from 4 for “Strongly agree” to 1 for “Strongly disagree.” The scores on the relevant items are then cumulated to form the total score. This procedure implicitly assumes that the difference between agreeing strongly and simply agreeing is the same as the difference between agreeing and disagreeing, an assumption which is neither reasonable nor in accord with what is known about the independence of intensity and direction of conviction. It has been found repeatedly that the term opinions topic. This fact relation between composed of L.

Likert-type it fended on the component is v poses. But, in 1 test variance u poses. The prol components.

The task of identifying and, separately the variance. Likert test technique found various in the wrong d.

McQuitty [8] three-choice test response separate item. That the three continuum is a are introduced items there wi relation, some very small num nine coefficient independent; alternatives e choosing one o the nine o into the same by usual meth.

In many tests several categories. This general rule where it lead will be discu. Construct Va cral different score, the subj with response what MacCor called an it what are call
ion of validity to the
as Campbell [8] has
view which advocates
judged tests, the
disguised tests, the
disguised measures is
validating apparently
view of the well-
of human nature, the
is to be assumed that
ones. In a direct or
is after all only the
ator, not those of his
ised. The present use
ests has coexisted for
ontrary usage which
sts and questionnaires.
of objectivity imposes
attitude towards the
ng of test responses;
dictions on the psycho-
responses. Although
ations of the present
re widely, the discus-
cerned only with
reasons which are
y or trivial. Most of
has been worked out
, but the justification,
ly statistical simplicity
ichomous items is
 such an ex-
esented together with
aving between four
ay be required to
one of the following,
agree,” “Disagree,” or
ery often arbitrary
ed to the alternatives,
ly agree” to 1 for
scores on the rele-
umulated to form the
cedure implicitly as-
ence between agree-
ly agreeing is the
ce between agreeing
unciation. It has been
found repeatedly that some individuals
have a tendency to express or accept ex-
treme opinions as such, regardless of the
p...
The present paper will endeavor to show how a theory of measurement can be based on dichotomous items conceived as observations without introduction of any surplus meaning of measurement into the individual items.

In an early monograph on attitude measurement Thurstone [106] distinguished two types of tests, increasing probability and maximum probability tests. Thurstone's method of test construction by equal-appearing intervals led to a maximum probability type of tests; each item is assigned a scale value and an individual's score is some average of the scale values of the items on which he scores plus. Ordinary tests of ability are increasing probability tests. The two types of tests were often confused, as pointed out by Loewinger [70], who proposed the terms cumulative and differential for the types of test. Coombs [14] has generalized the distinction somewhat with the terms monotone and non-monotone items. A monotone item is one for which an increase in the amount of the underlying trait will never decrease the probability of answering plus on the item. Non-monotone items are not excluded from the present discussion. But Thurstone-type tests, which assign a scale value to items as a means of computing a score, have a surplus meaning of measurement attached to items, just as Likert-type items do. They are therefore excluded from the discussion. Some of the ways in which combinations of dichotomous items can generate actuarial measurement of traits are discussed under Components of Construct Validity, B, in connection with the structural component of validity.

The present monograph is, in summary, restricted to consideration of dichotomous items viewed as present-absent observations of behavior whose psychological referents must be established by evidence. The alternatives lead either to injecting psychological or psychometric surplus meaning into the observations or to combining several observations into a single intervening variable. In the former case objectivity is surrendered, whereas intervening variables lose some of the character of samples of behavior.

D. THE PSYCHOLOGY OF OBJECTIVE TEST BEHAVIOR

Let us return to the psychology of objective test behavior. The naive assumption that the trait measured by a personality test item is always related in a simple, direct way to the apparent content of the item has long since been disapproved. Content, of course, is not a negligible factor, but content mediates the traits brought into play by an item in a more subtle and indirect fashion than early workers (and some present ones?) believed. Interaction of type of item with area of content in the setting of the objective test situation must be reckoned with.

A model of this kind of theorizing is Schaffer's essay [95] on psychoanalytic interpretation of Rorschach responses. One cannot be willing permanently to settle for pure theory without rigorous empirical checks, even though agreeing with Schaffer that there are methodological difficulties in the verification of his hypotheses. Nevertheless, his book is a valuable example of how theory, in his case, psychoanalytic theory, can generate hypotheses about the relationship of various traits (drives, defenses, and adaptive qualities) to various aspects of test behavior.

Although less searching from a psychodynamic view than Schaffer's book, an earlier paper by Lindzey [88] concerning the Thematic Apperception Test illustrates the integration of theory with data as well as the integration of psychometric with psychological considerations. Such a review of objective test behavior is needed. Undoubtedly many papers focused on other topics can be made to yield data for such a review.

Meehl's paper [85] on the dynamics of structured personality tests represents a noteworthy milestone. He contrasted two approaches to such tests. In the first S is asked about his behavior as a substitute for observing the behavior. Frequently as-
character of samples of

psychology of objective test behavior, a naive assumption that, by a personality trait, is a simple, direct content of the en dispositive. Contrary to a negligible factor, the traits brought into play are subtle and indelible (and some are subtle, indelible). Interaction of type "intent in the setting situation must be regarded of theorizing is psychoanalytic in third-person responses. One must settle for rigorous empirical testing with Schafer's psychological difficulties in hypotheses. Never-substantial example of use, psychoanalytic potholes about the traits (drives, dispositions) to various

from a psychologist's book, an article [68] concerning the Test illustrates a with data as well as carefully constructed, with facsimile data. Such a review is needed. Unfocused on other yield data for such

the dynamics of tests represents a de contrasted two-s. In the first S is or as a substitute for. Frequently as-

sociated with this approach is a priori construction of scoring keys, "requiring the assumption that the psychologist building the test has sufficient insight into the dynamics of verbal behavior and its relation to the inner core of personality that he is able to predict beforehand what certain sorts of people will say about themselves when asked certain sorts of questions" [55, p. 297]. The second approach "consists simply in the explicit denial that we accept a self-rating as a genuine surrogate for a behavior sample, and substitutes the assertion that a 'self-rating' denotes an intrinsically interesting and important set of verbal behavior, the 'true data of which must be disguised by technical means' [55, p. 297].

At the time Mehl's example was probably true that a priori the disguised scales were a matter of doctrine about objective test behavior. However, the nature of disguised judgments. Accumulated experience in the past ten years would lead one to suppose that partially the question of whether items are disguised and whether their significance can be guessed in advance by an astute psychologist. Mehl's example of nonsensical items in the Hy scale of the Minnesota Multiphasic Personality Inventory (MMPI) illustrates just this point. These items, he points out, all seem to say, "I am psychiatrically and socially well-adjusted." Since these items as a group are good indicators of hysteria and hysteric temperament, they are not valid if taken as direct representations of behavior. When viewed as indications of lack of insight, repression and dissociation, and the belle indifference of these patients, the items are seen to possess a theoretical relation to the syndrome which, empirically, they signify. Presumably today the meaning of such responses is more likely to be disguised from patients than from test constructors, but this statement is not to be taken as advocacy of a priori construction of scoring keys.

Mehl cites as examples of the empirical approach the MMPI and the Strong Interest Blank. While the Strong test was, indeed, constructed empirically, it has not been tied primarily to traits but to external predictions. A more important predecessor of the MMPI is the M-F test of Terman and Miles [101], which has been almost lost in limbo. Far more of contemporary personality measurement derives from their ingenious set of studies than is currently acknowledged. In particular, the principle that the possibility of measuring a trait accurately may depend on S not knowing what the investigator is measuring was dramatized, if not introduced, in their work. E. L. Kelly [62] participated in experimental demonstration of the principle. Campbell [9] cites some earlier but less impressive uses of disguised tests.

A few further references may clarify the purview of the psychology of objective test behavior. Mehl [55] observed that while ambiguity in wording and inaccuracy of memory are sources of error in the traditional thought of self-ratings, for the MMPI they may be sources of discrimination. Elias [27] found evidence that ambiguously worded items served projective purposes better than explicitly worded ones. Dorris, Levinson, and Hanfmann [22] found some evidence that third person items are better measures of defended against or unrecognized personality tendencies than first person items. Owens [91] found that validity was raised markedly by changing the format of a test from that of choosing or not choosing each of 30 statements to that of forced choice between 27 pairs of more or less contrary statements. The second (paired choice) test included a number of items taken directly from the first test, and these were, in fact, the most valid items of the second test. Some, but not all, more recent studies have confirmed the advantage of forced choice items [34].

Let us suppose that we have made some progress in finding combinations of types of items and areas of content which are reasonably sensitive indicators of basic personality traits. Clearly, theory is needed to find such items. But how can theory in turn be enriched by them? Objective test
items are uniquely accessible to study in their relations to each other, in the distribution of responses in the population, and in their relations to outside variables. Such data have much to offer in clarification and extension of psychological theory.

COMPONENTS OF CONSTRUCT VALIDITY

The APA Committee on Psychological Tests divided validity into four types, content validity, concurrent validity, predictive validity, and construct validity, with the implication that it is optional which kind of validity is proposed for a test [121]. With respect to construct validity, all of the other kinds of validity are possible supporting evidence, but again there is an implication of option. This analysis of validity was accepted by Cronbach and Meehl. The categories were not claimed to be logically coordinate; the fact that they are not is nonetheless disturbing.

The construct validity of a psychological test, that is, its validity as a measure of real traits, is in the present monograph conceived as having three aspects: the substantive component, structural component, and external component. These three aspects are mutually exclusive, exhaustive of the possible lines of evidence for construct validity, and mandatory. The substantive component is somewhat different from what was previously called content validity. The structural component includes, but is not exhausted by, such concepts as homogeneity and functional unity. The external component includes relation to non-test behavior, factorial pattern or relation to other tests, and absence of distortions. The predictive and concurrent validities of the previous papers are an alternative subdivision of the external component.

Thurstone [103, Ch. 14] proposed similar categories of evidence for the validity of factors. The suggestion that tests have internal and external validity has come from many sources, including Cattell [11, p. 545], Peak [92], and Guttman [47, p. 57]. Internal validity is here divided into substantive and structural components, again following many others.

The three aspects of validity are closely related to three stages in the test construction process: constitution of the pool of items, analysis of the internal structure of the pool of items and consequent selection of items to form a scoring key, and correlation of test scores with criteria and other variables. Any test composed of items contains an explicit or implied commitment with respect to each of these steps. Some items were considered for inclusion and some were not. Of those considered, some were included and some were not, often but not always on the basis of structural considerations; the nature of the scoring key, in any case, contains an implied commitment to a particular structure [92]. And a test cannot be presented seriously for clinical use unless something is known of its external correlations, possibly leading to modification in the test or in its interpretation. None of these steps in test construction is optional, and none is without consequence for the validity of the test in use.

A. SUBSTANTIVE COMPONENT

1. Use of content in item selection

There are many methods which have been used to select items to form a test. They can be classified according to whether the chief criterion is internal consistency, external validity, or reasonableness of content. Perhaps all major test construction projects have used a combination of criteria, but generally they have relied predominantly on a single one. The discussion in this section does not seek to evaluate these methods as a whole but simply to show how content is utilized in the several methods.

a. Content validity

According to the Technical Recommendations, "Content validity is evaluated by showing how well the content of the test samples the class of situations or subject matter about which drawn" [121, p. validity is appr know how S w verse of situati constitutes

Clearly, tests have most often concept similar justification. Ac not within the graph; nothing criticism of me tests. Guttman, advocated con tests as measure.

Using the te (implying, item as miniature states, "An attr by virtue of it indicates the c h he chooses for butes with tha verse" [44, p. 1

Guttman's en decision as to and whether a is the justificat viously under Validity that it is ad hoc would ordinari what the defin delimitation of enough [37, p by Ruth Tolm 38] illustrate i the Technical other exposition avoid this a Recommendat for content va

If a test preted as a some univer should indic represented pling is . should be di
matter about which conclusions are to be drawn” [121, p. 13]. Concern with content validity is appropriate when one wants to know how S will perform “in a given universe of situations of which the test situation constitutes a sample” [121, p. 13].

Clearly, tests of educational achievement have most often been constructed with a concept similar to content validity as their justification. Achievement tests, as such, are not within the scope of the present monograph; nothing said herein is intended as criticism of methods of constructing such tests. Guttman, however, has for some years advocated content validity in the context of tests as measures of traits.

Using the term attribute to mean item (implying, item as observation rather than as miniature measurement), Guttman states, “An attribute belongs to the universe by virtue of its content. The investigator indicates the content of interest by the title he chooses for the universe, and all attributes with that content belong in the universe” [44, p. 141].

Guttman's emphasis on the investigator's decision as to the nature of the universe and whether any particular items fall in it is the justification for the charge made previously under Extension of the Concept of Validity that the argument of content validity is ad hoc. To change the investigator would ordinarily be to change at least somewhat the definition of the universe and the delimitation of the items within it, as Goodenough [37, p. 104] pointed out. Studies by Ruth Tolman, Grayson, and Forer [31, 38] illustrate this point. Clearly, however, the Technical Recommendations and some other expositions of content validity seek to avoid this arbitrariness. The Technical Recommendations list as essential criteria for content validity:

If a test performance is to be interpreted as a sample of performance in some universe of situations, the manual should indicate clearly what universe is represented and how adequate the sampling is... The universe of content should be defined in terms of the sources from which items were drawn, or the content criteria used to include and exclude items... The method of sampling items within the universe should be described [121, p. 20].

The problem which arises is that the more one objectifies the nature of the universe from which the sample of items is to be drawn, the less likely is the universe to represent exactly the trait which the investigator wishes to measure. Moreover, for any given trait name, two investigators would not necessarily specify the same objective domain from which to draw a sample, nor the same method of sampling. Should a vocabulary test be drawn from an unabridged dictionary, an abridged dictionary, or a list of words in common use? And which one? One must either decide arbitrarily in favor of one such alternative and run the corresponding risk that another investigator might make a different decision, or one must demonstrate that the choice is inconsequential. To accomplish the latter requires a great deal of data and thus introjects strong considerations other than those of pure content.

A work sample test would seem to provide an optimal instance of content validity. Consider again, vocabulary. Certainly every word which can be defined correctly is a part of vocabulary. But Tucker [109] found that certain words had very low relation to the test as a whole, despite the fact that most words had a high relationship to vocabulary as a whole. The "poor" words had some common characteristics, but they could not have been identified in advance; they were not technical words. Apparently one will do a better job of measuring vocabulary as a whole, vocabulary as a trait, by omitting than by including the aberrant words. But to do so is to admit considerations other than content.

Both the authors of the Technical Recommendations and Guttman consider essential the evaluation of the internal consistency of the set of items considered to measure a given universe of content. Guttman envisages, and the Technical Rec-
recommendations do not exclude, possible
elimination of a small percentage of items
if they do not hold together with the rest
of the test. Thus some utilization of empiri-
cal evidence is regularly expected even
when the chief basis of test construction is
content.

"The heart of the notion of content valid-
ity" [67, p. 299] is that the test items are
samples of the trait-universe to which gen-
eralization will be made. In the great
majority of psychological tests the behavior
sampled is verbal and the trait to which
generalization is made includes much non-
verbal behavior. Thus content validity is
not applicable to such tests. But the point
can be pushed further. Test behavior is
always utilized as a sign of non-test behav-
ior, as emphasized previously under Rela-
tion of Test Behavior to Theory. The very
fact that one set of behaviors occurs in a
test situation and the other outside the test
situation introduces an instrument error
which is ignored by the concept of content
validity. The psychodynamics of testing,
"the psychology of objective test behav-
ior," can never safely be omitted in drawing
inferences from test behavior. The graduate
student who performs most brilliantly on
his qualifying examinations will not neces-
sarily be the most brilliant professor, nor
will the one who becomes amnesic on his
examination necessarily be equally blank
under less stressful circumstances. More
strikingly, the person who is best able to
respond in a test situation in a warm and
friendly manner is not necessarily the
warmest and most friendly person; it is
quite conceivable that there are traits such
that the capacity to simulate them indicates
their absence rather than their presence.

There is a continuum of tests ranging
from those whose content is most similar to
the behavior it is desired to predict to those
whose content least resembles the behavior
to be predicted. The problem introduced
here is the problem of the disguise of
measurement. Considerations of content are
most fruitful for theory, however, precisely
in those cases where the test is most dis-
guised, where the content bears the least
apparent relation to the trait. The term
substantive validity, which will be defined
presently, is introduced in the present
monograph because of the conviction that
considerations of content alone are not suf-
ficient to establish validity even when the
test content resembles the trait, and con-
siderations of content cannot be excluded
when the test content least resembles the
trait.

b. Empirical keying

At the opposite extreme from tests justi-
fi ed solely in terms of reasonableness of
content are those justified only in terms of
empirical properties of items. The term
empirical keying usually refers to selection of
items according to their correlation with
an external criterion, a method whose defi-
cencies have been explored previously un-
der Relation of Test Behavior to Theory.
It might as well refer also to selection of
items according to a criterion of internal
consistency, such as factor analysis. At this
point in the discussion the distinction
between external and internal empirical
criteria will not be important. Examples of
empirically keyed tests are the MMPI,
which began with a collection of all per-
sonality test items of a certain type then in
use, and biographical inventories, where
even more heterogeneous items are in-
cluded in the original test form. A particu-
lar key for such a test will often involve
only a small proportion of the items.

In the case of many empirical keys which
are used over a period of years, for ex-
ample, those of the Strong Vocational Inter-
est Blank, little or no attempt is ever made
to examine the content for common themes
in a given key. One suspects that some
ultra-empiricists would consider such ex-
amination of content as immoral or unscientific.
Yet an experimentalist is not considered
more scientific if he collects data and walks
away from it without seeking explanation of
the behavioral dynamics which account
for it. If theory is fully to profit from test
construction as a part of psychology, every
item included
accounted for;
made for expla
(cf. Jesser and
Even among
are interested
empirical keys
be considered
to delete items
section could
the content cl
This attitude edicated by the t
criteria for ch
the other are
ticular situatio
The danger be understim
ability that an
key by chan
reduced, at co
be made zero
items by cl
because of fc
relation with
[108] has we
dange of hy
There appe
son for ignorin
content alone
of a test or o
lem is to find
permitting ut
with empiri

2. The uni

The first st
structing or
items. Some
made as to co
were not so
inclusion in
the Stanford-
blems in long
priate for in
constructor
mind, and th
of discourse
he will choo
content bears the least the trait. The term which will be defined used in the present of the conviction that tent alone are not suf
suf-ficiency even when the is the trait, and con-
t cannot be excluded at least resembles the
g

reme from tests justi-
of reasonableness of ified only in terms of of items. The term
lly refers to selection their correlation with a method whose deen
Behavior to Theory, also to selection of criterion of internal cri-
ator analysis. At this join the distinction 1 internal empirical em-
portant. Examples of its are the MMPI, collection of all per-
certain type then in inventories, where eous items are in-
test form. A particu-
t will often involve a of the items.

empirical keys which d of years, for ex-
Vocational Inter-
tempt is ever made for common themes suspects that some consider such exam-
nonal or unscientific.
is not considered ects data and walks seeking explanation nics which account to profit from test f psychology, every

item included in a scoring key must be accounted for; a less strong case can be made for explaining the exclusion of items [cf. Jessor and Hammond, 60].

Even among the test constructors who are interested in examining the content of empirical keys, it would almost certainly be considered gross scientific impropriety to delete items because no reasonable connection could be found between them and the content chiefly indicated for the test. This attitude is the opposite of that indicated by the term content validity; yet the criteria for choosing one view rather than the other are not easily applied to a particular situation.

The dangers of pure empiricism must not be underestimated. There is always a probability that an item be included in a scoring key by chance; the probability can be reduced, at considerable cost, but it cannot be made zero. Quite apart from inclusion of items by chance, items may be included because of fortuitous but misleading correlation with the trait measured. Travers [108] has worked out a striking example of the dangers of pure empiricism in the absence of hypotheses.

There appears to be no convincing reason for ignoring content nor for considering content alone in determining the validity of a test or of individual items. The problem is to find a coherent set of operations permitting utilization of content together with empirical considerations.

2. The universe and the pool

The first step in test construction is constructing or (often) collecting a pool of items. Some decision, broad or narrow, is made as to content at that point. "I wish I were not so shy" was not considered for inclusion in the pool of items from which the Stanford-Binet was constructed; problems in long division were clearly inappropriate for inclusion in the MMPI. A test constructor must have some purpose in mind, and this purpose defines the universe of discourse or area of content from which he will choose items for the original pool.

The primary purpose may be to improve an external prediction, to measure a trait postulated by theory, or to investigate the structure of some aspects of behavior. (Whichever is the investigator’s chief purpose, he is ultimately involved in all three enterprises if he wishes to relate his test to theory.)

An unfortunate confusion between the pool of items and the area of content has arisen in test theory [74]. This confusion is signalized by the term “universe of items.” Papers on test theory often assume that items are chosen randomly [77] or simply independently and without regard to empirical properties [48] from a universe of items possessing a characteristic such as some form of homogeneity. In practice, tests are usually constructed by choosing the best items from the pool used in the test construction research. While the pool is chosen on an a priori basis, the choice of items from the pool is made according to the properties of the items revealed by empirical study.

The point to note is the difference between what actually takes place in constructing a test and the process implicitly assumed in test theories. Random selection from a “universe of items” does not describe selection of the pool of items or of the scoring key. So far as constitution of the pool is concerned, selection of a single item automatically excludes many others which differ only slightly from the chosen one. Thus several items are neither randomly nor independently selected. The term “universe of items,” moreover, obscures the fact that between the presumably unlimited number of items representing a given content and the finite pool of items actually studied there intervenes an idiosyncratic, nonreproducible process, the process by which the given investigator or group of investigators constructs or selects items to represent that content. Although this process, the constitution of the pool of items, is a universal step in test construction, it has not been adequately recognized by test theory. But this step in test construction is crucial for
the question of whether evidence for the validity of the test will also be evidence for the validity of a construct.

Cronbach and Mehl point out that in any characterization of a cluster of items

... an element of inductive extrapolation appears in the claim that a cluster including some elements not-yet-observed has been identified. Since, as in any sorting or abstracting task involving a finite set of complex elements, several nonequivalent bases of categorization are available, the investigator may choose a hypothesis which generates erroneous predictions. The failure of a supposed, hitherto untried, member of the cluster to behave in the manner said to be characteristic of the group, or the finding that a nonmember of the postulated cluster does behave in this manner, may modify greatly our tentative construct [20, p. 202].

The reasoning of the above quotation is not, I believe, open to question. Guttman has made similar observations about the successive redefinition of “universes” according to whether predictions are verified. Logically, of course, predictions are indistinguishable from concurrent correlations. It follows directly from the above quotation that to characterize a cluster of items with any confidence requires a knowledge not only of a number of items included in the cluster but also of many items which fail to meet requirements for inclusion in the cluster. Indeed, the excluded items might reasonably be required to exceed greatly the items included. The present proposal is that this requirement be met not in a lengthy series of investigations, though verifying studies are always in order, but primarily in the very constitution of the pool of items from which the test is chosen.

The use of tests for the elucidation of constructs suggests the following principles, in descending order of generality:

At very least, the items in the pool should be drawn from an area of content defined more broadly than the trait expected to be measured.

When possible, the items of the pool should be chosen so as to sample all possible contents which might comprise the putative trait according to all known alternative theories of the trait. Thus the empirical data utilized for construction of the scoring key simultaneously test hypotheses about the underlying trait. This principle has been advocated and practiced by Thurstone [104] and Guilford [40, 42].

The proportion of items of different content is not specified by the previous principle, but may affect the outcome of factorial studies. A principle which suggests itself here is one (or perhaps a modification of one) proposed by Brunswick [7]: that the various areas or sub-areas of content should be represented in proportion to their life-importance. This suggestion is similar to one made by T. L. Kelley [61] and by Cattell [11, p. 215], who assumed that life-importance could be judged by dictionary representation.

A recent proposal by Guttman\(^1\) seems to offer an alternative to representation of areas of content according to life-importance. Stephenson [99] earlier advocated a similar design for Q-sort items. Guttman proposes that what might be called the logical dimensionality of an area be predetermined by the investigator, e.g., a set of items may differ in form, content, complexity, and other dimensions. These dimensions correspond to Fisher's "factors" in analysis of variance designs. Guttman proposes to call them "facets" to avoid confusion with factor analysis. Each facet has a set of values; for example, the content possibilities might be words, numbers, and geometric figures, the forms multiple choice, true-false, and completion, and so on. The experimental design Guttman proposes is that each value of each facet be paired with each value of every other facet, as in an analysis of intention apparent experimental design factor analysis which has not as yet been published. This discussion is based on a mimeographed paper by him, "What lies ahead for factor analysis?" issued from the Center for Advanced Study in the Behavioral Sciences, Stanford University, 1956.

\(^1\) Dr. Guttman has presented a number of papers on facet analysis which have not as yet been published. This discussion is based on a mimeographed paper by him, "What lies ahead for factor analysis?" issued from the Center for Advanced Study in the Behavioral Sciences, Stanford University, 1956.
as in an analysis of variance design. The intention apparently is to combine this experimental design with a new form of factor analysis which Guttman calls "radex theory" [50]. Until further details and examples are published, it is not possible to evaluate the proposal as a whole. The following comments are meant only to apply to facet analysis in present context, not in all the many applications which Guttman foresees for it.

Logical analysis of an area of content on some such basis as facet analysis, if supplementary to the principles proposed above, is valuable to insure complete coverage of the area and has been practiced by psychologists professionally engaged in test construction and analysis for many years. As an alternative principle to representation in terms of theories at stake or in terms of life-importance of sub-areas, it is not acceptable. Pairing every value of every facet with every value of other facets may at times be a highly artificial procedure. Some contents may adapt themselves far more readily to some forms than others. Moreover, important sub-areas of content may be missed by this design. For example, problems may involve words or numbers or words and numbers. It may make sense for several values of a single facet to be represented in a single item. This possibility violates the neat but artificial Fisherian design which Guttman proposes. Brunswik's [8] criticism of factorial design is particularly opposite to Guttman's facet analysis and Stephenson's similar proposal.

It should be noted that neither Stephenson nor Guttman uses facet analysis exclusively. The examples in the foregoing exposition are those of the writer and not of Stephenson or Guttman. The point is that these are simply elaborate and complicated examples of content validation, of a priori definition of constructs. Neither Guttman nor Stephenson advocates the objective delineation of constructs through observation of the variety of items included in and excluded from the cluster defining the construct in the manner envisaged in the present monograph.

3. The concept of substantive validity

The proposal of this monograph is that the pool of items be constituted on the basis of some broad area of content. The empirical relations among the items, and perhaps between items and criteria, serve as basis for selection of items from the pool to form a scoring key. If the pool has been properly constituted, the process of test construction also tests a family of hypotheses about the trait to be measured. The principles by which the pool of items is constituted have been discussed above; the next section will discuss some principles for the selection of items from the pool. The substantive component of validity is the extent to which the content of the items included in (and excluded from?) the test can be accounted for in terms of the trait believed to be measured and the context of measurement. Context includes psychological theory and, in particular, "the psychology of objective test behavior."

The program implied by content validation is inclusion of items in a test solely on the basis of theory; empirical keying implies inclusion of items in a test solely on the basis of data. The present program is that items be included in the original pool on the basis of a judgment of relevance to a broadly defined field. The final selection of items shall be made, however, on the basis of empirical findings. The substantive component of validity is the ability of theory to account for the resultant content; it cannot be determined unless the pool of items is broader in scope than the test.

B. STRUCTURAL COMPONENT

1. The concept of structural validity

The structural component of validity refers to the extent to which structural relations between test items parallel the structural relations of other manifestations of the trait being measured. This concept will seem novel to many psychologists, but undoubtedly others will find it congenial or even familiar. The concept of structural
validity includes both the fidelity of the structural model to the structural characteristics of non-test manifestations of the trait and the degree of inter-item structure. Given fidelity of item structure, the more highly structured test may be said to have greater structural validity. Since previous discussions of structure have put more emphasis on degree of structure than fidelity of structure, the present paper will reverse the emphasis. Previous reviews of structural theory include chapters by Peak [92] and Coombs [14].

The concept of structural fidelity is based on the ideas developed previously under Relation of Test Behavior to Theory. By confining consideration to dichotomous items considered as observations rather than as miniature measurements, we have insured that the test responses can be considered legitimate samples of behavior. Since test behavior is a sample of behavior in general, it may be assumed to share the characteristics of other behaviors, in particular, the structural characteristics. If the analysis were based on scores rather than on the original item responses, those structural characteristics might well be obscured.

For any given trait it seems reasonable to assume that there is an upper limit to the intercorrelation of its manifestations, which might be called its characteristic intercorrelation. For example, two manifestations of numerical ability would be expected to be more closely related than, say, two manifestations of aggressiveness. Two manifestations of verbal facility would be more closely related than two manifestations of introversion. It is necessary to add, however, that the characteristic correlation is an upper limit and that the lower limit is always zero, as one proceeds from those actions most determined by the given trait to those least determined by it.

According to this line of thinking, the same characteristic value would define the upper limit of correlation of two non-test manifestations of a trait, of two items measuring that trait (ignoring distortions produced by the test situation, which would raise the inter-item r), and of an item with a non-test manifestation. If this view proves correct, such inferences as can be drawn from test behavior will not be based on direct correspondence between individual items and particular behaviors outside the test situation, except in so far as both are related to a central trait. (Cf. Lazarsfeld’s definition of a pure test: “All interrelationships between the items should be accounted for by the way in which each item alone is related to the latent continuum” [65, p. 367].) The injunction against interpretation of individual items is not, of course, a new one, but the present reason is somewhat different from the usual one. It is unfortunate, however, that the weakness of item responses as measures of extratext behaviors led most psychometricians to concentrate on total scores almost to the exclusion of individual responses. The problem of the structural relations of responses was thereby obscured.

Sociologists have in recent years shown great preference for the structural model of Guttman-type scales. Studies by Riley, et al. [93], and some other users of Guttman scales appear to be predicated on the assumption that the most rigorously structured mathematical model is invariably the preferred one. This view is contrary to the view proposed here, that the outstanding virtue of a model is its fidelity to what is known about manifestations of the trait or type of trait involved.

The question arises, how can items be found which have at least apparently a closer or more rigorous relation to each other than is in fact characteristic of manifestations of the given trait? There is no unique coefficient of correlation for two dichotomous items. Some coefficients are prejudiced in favor of and some against items which differ in difficulty. In order to define uniquely the characteristic correlation of the manifestations of a given trait, further specifications must be made, such as “phi coefficient for two items each of which characterizes half the population.” The Guttman-scalability of a set of items can be raised which are wider analog, rather than near median diff scales are usual, same thing is as cutting points are reduced to technique of scf [71] has shown spaced in diff lowers validity item correl most often the statistical rather extraordinarily raising validity considering the analysis.

Guttman, ind of promotion of items, at least a argued that substituting the inverse Spearman, who in favor of a s basis of a set of those found to Thus Guttman to determine the character of rather than precise measurer of precise trait. In is closer to that which advocate his own disc miming multiple mize scalability a practice which since this pract of items.

2 Mmgeograph the development of Center for Adv Sci, Stanford
and of an item with a. If this view proves as can be drawn ill not be based on between individual behaviors outside the n so far as both are sit. (Cf. Lazarsfeld’s st: “All interrelation- ections should be ac- y in which each item e latent continuum” inection against inter- al items is not, of it the present reason from the usual one. ever, that the weak- as measures of extra- t psychometricians to scores almost to the responses. The pro- relations of responses

can be raised by choosing those items which are widely spaced in difficulty or its analog, rather than those items clustered near median difficulty. That, in fact, is how scales are usually produced [100]. The same thing is accomplished by selection of cutting points when multiple choice items are reduced to dichotomies in the Cornell technique of scale analysis [46]. Loevinger [71] has shown that while selecting items spaced in difficulty raises scalability, it lowers validity for tests whose characteristic item correlation is not high, which is most often the case. While the argument is statistical rather than empirical, there is extraordinarily little empirical evidence for raising validity by improving scalability, considering the amount of interest in scale analysis.

Guttman, indeed, does not sanction improvement of scalability by selection of items, at least as a general practice. He has argued that such use of the scale model puts the investigator in the position of Spearman, who was criticized for arguing in favor of a single general factor on the basis of a set of tests “purified” by deleting those found to have “overlapping specifics.” Thus Guttman favors use of scale analysis to determine the degree of scalability characteristic of what he calls “the universe,” rather than production of an artificially precise measure of an intrinsically non-precise trait. In this respect Guttman’s view is closer to that of the present monograph, which advocates fidelity to the structural characteristics of the trait, than to that of his own disciples. However, in dichotomizing multiple choice items so as to maximize scalability [46], Guttman is permitting a practice which he otherwise eschews, since this practice is equivalent to selection of items.

A Guttman-type scale exists when all responses of the Ss can be reproduced from knowledge of their total scores; this is the definition of a scale. Then in substituting scores for patterns of item responses, no information is lost. So bemused have sociologists been by the demonstrated virtues of true Guttman-type scales that other devices in addition to selection and dichotomization of items have been used for artificial production of scales. Stouffer, Borgatta, Hays, and Henry [100] have used “contrived items,” each composed of several items; scalability is then sought for the contrived items rather than the original responses. Guttman [49] has proceeded in a different direction, assigning to each non-scale response pattern a corresponding scale pattern, by a method called “image analysis” or the “Israel Alpha technique for scale analysis.” Neither method retains all the information in the original data, which was the virtue of a true scale, and neither method has been shown to maximize any desirable quality of a test. Stouffer’s method is shown to be slightly better than older techniques of item selection based on scale analysis.

Occasionally recognized but much more often forgotten in the circles where scale analysis is practiced is the distinction between the discovery of structure in a set of items and the imposition of structure upon the items. If tests are to serve as instruments of theory, no consideration is more crucial. Guttman [44] early took a stand against empirical item selection altogether, since he believed the function of structural analysis to be discovery rather than creation of structure. Nonetheless, he has sanctioned many methods which, in effect, create structure.

Coombs has been far more perceptive with respect to this point [13, 14], repeatedly and in various contexts stressing the difference between a structure which may or may not appear in a set of items and a structure which the methods employed cannot fail to reveal. The model of a perfect scale was one which a set of items could or could not conform to; presumably in practice the conformity was never perfect. On the other hand, some kinds of

image analysis cannot fail to produce a perfect scale. Thurstone's method of constructing attitude scales by equal-appearing intervals can hardly fail to produce a scale with equal-appearing intervals. Yet Thurstone's method need not and Guttman's analysis does not involve selection or rejection of items. The writer, in connection with published research [23], has systematically searched pools of as many as 50 items and found to find any combination of items for which Kuder-Richardson Formula 20 revealed appreciable homogeneity, say, .4. Thus, the question of whether structure is imposed or discovered is different from whether item selection is permitted.

The present monograph proposes that items be selected from a large pool on the basis of empirical properties, in particular, that those items be selected which best conform to an appropriate structural model. The method should be such that items which conform to the model may or may not appear. Ordinarily the degree of structure of the resulting test should also be assessed.

Selection of items does raise a somewhat different problem, that of cross-validation. Tukey states: "In every field of science, and particularly in fields where data and analysis [are] complex, there are two different phases of quantitative analysis—exploration and confirmation—and almost always, when dealing with complex problems, these have to be carried out on different samples of data" [111, p. 66]. Thus if a given set of items is discovered to have structural coherence in one set of data, the hypothesis of structural coherence must be tested with a fresh set of data.

2. Some kinds of structure

What kinds of structure are known to exist among the manifestations of various traits? An exhaustive list of possible structures will not be attempted here; such lists quickly sink to a lifeless and pedantic level.

a. Quantitative models

The most obvious kind of structure is the one in which the number of manifestations is an index of the amount of the trait. Such a trait is appropriately measured by a cumulative test, that is, a test whose score is the number of items marked plus. This structure is the one which has been most adequately explored statistically. Different kinds of structure have the cumulative or additive character, the difference lying in the degree of relationship among the items.

When the degree of relationship among items is low or moderate, optimal construct validity is produced by selecting "median equivalent items," i.e., those items having highest intercorrelations and lying closest to 50% difficulty or its analog ("marginal frequency"). This is the model which has been most thoroughly exploited in psychological test theory and will here be called the classical quantitative model. The method of Loevinger, Gleser, and DuBois [75] for constructing homogeneous subtests from a large pool of items has been evolved explicitly for this type of data. Items are selected for their ability to maximize a coefficient equivalent to the Kuder-Richardson Formula 20, which is considered currently the best measure of test homogeneity [121].

When the intercorrelation of the items is very high, spacing the items in difficulty improves validity. What constitutes "high" depends on the number of items and other factors [71]. Guttman's scale model [44], which is similar to a model for a perfectly homogeneous test proposed by Loevinger [69], is appropriate for this case. Unfortunately Guttman does not publish the relationship between the computational techniques he recommends and the brilliant mathematical derivations from which they derive their prestige. This observation is conspicuously true of his coefficient of reproducibility, which has often been criticized. His recently proposed methods of image analysis are ostensibly based on image theory [48], but the intermediate steps in the reasoning are not available in accessible publications.

Guttman's scale model and Loevinger's
model of a homogeneous test are discussed more extensively by Peak [92], who criticizes them on grounds which appear to be similar to what is here called structural fidelity. Humphreys [58] and Carroll [10] have made similar criticisms.

Tucker [109] has recently worked out a model for cumulative tests intermediate between the classical quantitative type and the Guttman-scalable type. Most words in a long vocabulary list conformed to his model. The model may be described as follows: the items are assumed to be homogeneous in the sense that all correlation between them is accounted for by a single ability, as in Lazarsfeld’s latent structure analysis. The scale of ability is so chosen that the regression of proportion passing the item on ability is described by approximately the same ogive for all items, except that the ogive varies parallel to the scale of ability. The shifting of the ogive for different items corresponds to changes in difficulty level. Items are dispersed in difficulty, like the Guttman scale and unlike the classical quantitative model, which concentrates difficulties near the 50% mark. The relation between an individual’s total score and his score on any item is probabilistic rather than almost certain, as in Guttman scales. Perhaps Tucker’s model represents the closest approach to Guttman scales which can be expected with psychological test materials.

Methodologically, working out a structural model in conjunction with a test construction problem which is intrinsically interesting appears highly desirable. Empty models, models which apply to no content, are thereby guarded against. Tucker’s type of scalability may therefore be expected to find further use. For most purposes, however, and certainly where personality tests are the chief concern, it suffices to consider traits whose manifestations are not highly correlated.

b. Class models

When a clinician states that the meaning of a symptom, say, withdrawal from social situations, must be judged by the context in which it occurs, he implies a different structure from the cumulative one. Translating this kind of clinical judgment into a structural model is not entirely obvious. One might translate it: of the several manifestations which characterize this trait, all, or perhaps all but one or two, must be present in order for one to say that the trait is present. The trait, then, is either present or absent. Its manifestations do not indicate amount, but if a sufficient number are present, signalize the presence of the trait. A smaller number have no significance in relation to the given trait. Clearcut clinical examples which follow this structure are not easy to find, whether because of the fluidity of present nosology or because clinicians are accustomed to thinking in more idiosyncratic terms. To take an example from medicine, fever and cough may indicate several diseases, fever and rash may also indicate several diseases, but fever, cough, and rash together strongly suggest a diagnosis of measles. There are other characteristic signs, particularly the history of onset, but some variation is observed. An example from test theory is Harrower-Erickson’s [53] nine Borschach signs. Presence of five or more is said to indicate neurosis. The example is not a perfect one, since the signs are all summaries rather than simple responses.

The foregoing pattern might be called a class pattern. It describes a class of people rather than a trait present to greater or less degree in all of us. Traits of the latter type, present in everyone to a degree, often follow the cumulative pattern described at the beginning of this section and might be expected to arise in relation to developmental experiences shared by all or by large segments of the population. Class patterns might be expected to be appropriate in relation to the problem of diagnosis. Historically, however, the patterns have not been used in that fashion. Hathaway and McKinley [54] used classification of patients into diagnostic categories as part of the original validation enterprise of the MMPI.
But the supposed traits defined by keys chosen for ability to discriminate diagnostic groups from normals were then treated as quantitative traits, as if they measured a characteristic more or less present in everyone. It may be true that various diagnostic groups represent extreme cases with respect to universal traits. Such a proposition requires proof, and the success of the original keys for the MMPI has not been such as to constitute such proof. According to French's [32] review, many of the personality traits found in factor analyses have been established either in normal populations or in pathological groups but not in both. (Construction of a model adequate to the complexities of clinical diagnosis will not be attempted here.)

Lazarsfeld's [65, 66] latent structure analysis is a general set of methods for handling data which do not conform to Guttman's scale model. In principle, the methods are very general indeed; in practice, the only methods which are well elaborated are those which account for a set of responses to items by assigning the individuals to (an arbitrary number of?) latent classes. Each latent class is homogeneous with respect to the trait presumed to be measured. The items are assumed to be pure measures of the trait, in the sense that all correlation between them is accounted for by that trait. Thus, within any latent class there is no correlation between items. In addition to the assumption about the number of latent classes, some assumption must be made about the form of the regression of items on latent classes. In general, both monotone and non-monotone items can be included (unlike most other methods), and the latent classes may or may not be assumed to be points on a single continuum. Observed frequencies of the various patterns of responses are then used to make inferences about the proportions of the population within the several latent classes. Those inferred proportions are utilized with the observed item frequencies to generate the expected frequencies of various response patterns. The expected frequencies are then compared with observed frequencies in order to test the goodness of fit of the inferred structure.

Hays and Borgatta [55] have shown that more than one assumed structure within the framework of latent class theory can generate data which agree reasonably well with a single set of observed data. This problem has been recognized by Lazarsfeld but has not been sufficiently investigated, at least in available work.

An investigation by Chiang [12], although not mentioning latent structure analysis, appears to be concerned with essentially the same mathematical problem. Chiang demonstrates that for four or five items the power of the test of any latent structure is poor unless the number of individuals is in the thousands. To have a reasonable chance of detecting the falsity of an assumed structure, even with about a thousand cases, eight items are needed. Most if not all published instances of latent structure analysis have utilized fewer than eight items; typically, four items are used.

In view of Chiang's work, or, to put the matter another way, in view of the many arbitrary assumptions which must be made to apply latent class analysis, there is some question how valuable a tool it will prove to be in terms of contribution to theory. Strangely enough, published illustrations of its use concern chiefly traits which are more easily conceptualized as quantitative than as categorical, such as soldiers' attitude towards the Army [64].

c. Dynamic models

Neither the cumulative models nor class models are adequate for dynamic traits. Psychoanalytic theory postulates, and some psychologists who reject other aspects of psychoanalysis also accept, that opposing tendencies may have a common motivational source. Peak [92] assumed that dynamic organization of traits could be demonstrated only by time changes. The view of the present monograph is that it should be possible of dynamic organization the crucial evidence.

One dynamic str two particular ma trait may be mutual the extreme case, nega [11, Ch. 5], who at length, showed structure may be relation. Frenkel-B study of adolescence behavior on "exub correlated .30 and of the drive for who knew the Se ratings were neg -.52) and the mu for aggression with bility was .73. S evidence for the manifestations of A somewhat diff may be derived fr conflict. The noti of neuro characteristic of basis of a number those of Zubin [1], McQuitty [83], consistency in terr ignoring a distin Zubin [120], ana logical and the pe item. It is thus ac empirical discover phrase students res markedly illogical Zubin [120] de of empirically de response, differenti characteristic of pathological gron the average gather and the f. The neurotic gro fewest patterns the greatest num exceeding in bo
terns. The expected compared with ob-
a order to test the inferred structure.
[55] have shown that ned structure within
class theory can agree reasonably well
observed data. This
ignorized by Lazarsfeld
sufficiently investigated,
work.
by Chiang [12], al-
ing latent structure
be concerned with
athematical problem.
that for four or five
be test of any latent
is the number of individ-
s. To have a reac-
ting the falsity of
, even with about a
it items are needed.
e instances of latent
 utilized fewer than
, four items are used.
work, or, to put the
in view of the many
which must be made
alysis, there is some
le a tool it will prove
tribution to theory.
ished illustrations of
traits which are more
as quantitative than
as soldiers' attitude
4].
}

ative models nor clas-
e for dynamic traits.
/ postulates, and some
ject other aspects of
accept, that opposing
/ a common motiva-
[92] assumed that
n of traits could be
by time changes. The
monograph is that it
should be possible to find structural traces
of dynamic organization, though admittedly
the crucial evidence is not yet in.

One dynamic structural possibility is that
two particular manifestations of the same
trait may be mutually exclusive or in a less
extreme case, negatively correlated. Cattell
[11, Ch. 5], who discussed this possibility
at length, showed that the effect of this
structure may be to attenuate a positive
relation. Frenkel-Brunswik [33] found in a
study of adolescents that ratings of overt
behavior on "exuberance" and "irritability"
correlated .30 and .42 with intuitive ratings
of the drive for aggression by clinicians
who knew the Ss well. The two behavioral
ratings were negatively correlated (r =
-.52) and the multiple correlation of drive
for aggression with exuberance and irrita-
bility was .73. She cited these data as
evidence for the principle of alternative
manifestations of a drive [33, p. 302].

A somewhat different dynamic structure
may be derived from the notion of neurotic
conflict. The notion that conflict is charac-
teristic of neurosis and self-consistency
characteristic of normality has been the
basis of a number of researches, including
those of Zubin [120], Winthrop [116], and
McQuitty [83]. Winthrop [116] defined
consistency in terms of formal logic, thereby
ignoring a distinction made earlier by
Zubin [120], among others, between the
logical and the psychological meaning of an
item. It is thus not surprising that his chief
empirical discovery was that normal college
students responded to his test in a
markedly illogical fashion.

Zubin [120] defined consistency in terms
of empirically determined patterns of re-
response, differentiating, however, patterns
characteristic of normal from those of
pathological groups. His normal group had
on the average the most patterns alto-
gether and the fewest abnormal patterns.
The neurotic group had on the average
fewest patterns altogether despite having
the greatest number of abnormal patterns,
exceeding in both respects the psychotic
and the organic groups of patients. Zubin's
method, which consisted essentially of look-
ing for all possible patterns of response, is
unwieldy because of the large number of
possible patterns with a reasonably large
pool of items. He solved this problem by
examining only a small fraction of the pos-
sibilities, clearly an unsatisfactory solution.

Several studies by McQuitty [83, 84]
have also been concerned with measure-
ment of "personality integration" and with
testing various hypotheses about the rela-
tion of such integration to mental health.
While considerable ingenuity in the inven-
tion of methodology was exercised, the
methods are not comparable with those
discussed in the present monograph.

An unpublished study has taken the same
basic idea, that conflict is evidence of mal-
adjustment or neurosis, and combined it
with content considerations. Dr. Jack
Block, in investigating the postulated di-
mension of ego-control, found the most
maladjusted individuals tended not to be
those extreme in the direction of over-
control or extreme in the direction of
under-control. Rather, the psychologically
most disturbed individuals appeared to be
those who manifested, in some extreme,
consistent, unIntegrated fashion, both over-
and under-control simultaneously.
This pattern differs from the one of alter-
ative manifestations, since there is no
necessary contradiction between one par-
ticular manifestation of control and another
particular one. The contradiction resides in
the individuals, and the techniques for
demonstrating the existence of the contra-
diction must be correspondingly different.

From a formal point of view the problem
of "scatter" in measurement of abilities
resembles the problem of dynamic struc-
ture. Two quite different kinds of scatter
have been studied, intra-test and inter-test
scatter. In the case of intra-test scatter, the
test items are all assumed to be equivalent in function and the dispersion of successes and failures along the scale of difficulty (or its analog) represents S’s tendency to inconsistency. In the case of inter-test scatter, the functions called on by the several tests are not assumed to be identical. Many studies have attempted to show, with varying degrees of success, characteristic patterns of relatively high and low scores for different clinical syndromes [39, 50]. The Wechsler-Bellevue test has been most often studied in this regard, but other tests have also been used. Even when studying inter-test scatter there must be an assumption of community of function in the several subtests, else there would be no basis for establishing a general level and thus of measuring scatter. The general level is established by some aspect of S’s performance, often by a test such as vocabulary which is presumably not easily subject to deterioration. The two types of scatter might be termed “pure scatter” (intra-functional) and “patterned scatter” (inter-functional). The possibility must be recognized that what appears to be pure scatter may in fact be an unrecognized pattern. Both types of scatter have theoretical implications, but patterned scatter can be expected to be more fruitful theoretically. There are many possible ways of measuring scatter; theoretical implications of the various coefficients have not been fully explored.

3. Pattern analysis and configural scoring

The topics of configural scoring and pattern analysis [35] have received attention in many quarters recently and must be related to the present discussion. All of these methods, with the notable exception of a recent exposition by Haggard [52], appear to be criterion-oriented; that is, they are methods of combining data so as to improve prediction of a single specified criterion. Cronbach and Gleser [19] have shown that measures of profile similarity in general are simple measures of linear distance in a space equal in dimensionality to the number of tests; such models assume linear or additive combination of tests. The term “configural scoring” has been used for non-linear combination of test and item scores [86, 56]. Methods such as Lykken’s [80] actuarial pattern analysis and duMas’ [24, 25] manifest structure analysis include both linear and non-linear models.

Meehl [86] introduces his discussion of configural scoring with a paradox: he displays an instance where each of two variables fails to predict the criterion but the two scored together have high validity. But here Meehl has introduced a paradox faster than he apparently intended, and it is the paradox of all actuarial pattern analysis. The broader paradox is this: no item of information can ever be discarded as useless for any prediction. For even if it seems to have no correlation with the criterion, it may, when scored configurally with other items, yield valid prediction. There is no means for assigning any reasonable limit to the number of items which must be considered as possible predictors, nor to the possible combinations which must be examined. Shall we measure the universe and intercorrelate everything in it? Worse, there is no limit to the variety of relationships which must be explored.

In practice, suggestions of various kinds are made for limiting the scope of the search. Indeed, in view of the present access to electronic computing machines, the limiting consideration is not the examination of large numbers of combinations of data but the fractionation of the sample to the point that the number of cases for most patterns is too small to be useful. Collection of patterns which exceed the level of significance only by chance would also appear to be a problem where almost unlimited instances are available.

Lykken [80] proposes to collect criterion data for MMPI profiles by using 9 scales. If each scale is dichotomized, as he proposes, there are still 512 possible patterns. One wonders how Lykken is confident that the non-linear relationships which actuarial pattern analysis within the dichotom is rather than between.

One difference: the present monotonous advocates of latter do not see assembling a set the best items of pattern analysis specific criteria measurement of trauma related to both the differing util analysis and the Tukey [111] on statistics for of city of theoretic the “true” whole problem of the the lap of the s evaluating hypotheses. This approach h advances in others.

Tukey’s point: We cannot cling and still do science event is ultimate we agree to responses of “yes” born in the Un the angle at whi etc. Some gen place when say, mous item are c gories. This class: beliefs about the aspects of respon different ways of equivalent. This greater detail by

For any cons to be managea decision that res response are eq decision does no than the one al point that I wo tion that we util
ich models assume
nation of tests. The
has been used for
of test and item
such as Lykken's
alysis and duMas'
hure analysis include
ear models.
his discussion of
paradox: he dis-
each of two vari-
the high validity. But
ed a paradox vaster
ed, and it is the
al pattern analysis.
is this: no item of
be discarded as use-
For even if it seems
with the criterion, it
figuratively with other
diction. There is no
any reasonable limit
which must be con-
rectors, nor to the
which must be exa-
re the universe and
ng in it? Worse, there
ity of relationships
ons of various kinds
the scope of the
view of the present
computing machines,
 is not the exami-
ners of combinations
ation of the sample
umber of cases for
all to be useful. Col-
hich exceed the lev-
ch chance would also
em where almost un-
aible.
ese to collect criterion
les by using 9 scales.
onomized, as he pro-
2 possible patterns.
lken is confident that
ships which actuarial
pattern analysis is to reveal do not occur
within the dichotomized segment of a scale
rather than between segments.
One difference between the approach of
the present monograph and that of the vari-
s advocates of pattern analysis is that the
latter do not separate clearly the steps of
assembling a pool of items and of selecting
the best items from the pool. Orientation
of pattern analysis towards prediction of
specific criteria rather than towards meas-
urement of traits is another difference.
Related to both of the foregoing points is
the differing utilization of theory in pattern
analysis and the present approach.
Tukey [111] has criticized a symposium
on "Statistics for the clinician" for the pauc-
ity of theoretical considerations, the ten-
dency of many psychologists to throw the
whole problem of finding relationships into
the lap of the statistician rather than pro-
viding hypotheses to guide the statistics.
This approach has not been the pathway to
advances in other fields, he indicates.
Tukey’s point may be stated differently.
We cannot cling to every bit of our data
and still do scientific research, for every
event is ultimately unique. For example,
we agree to regard as identical all re-
ponses of "yes" to the question "Were you
born in the United States?" regardless of
the angle at which the pen met the paper,
etc. Some generalization has already taken
place when, say, all responses to a dichoto-
ious item are classed in one of two catego-
ries. This classification is justified by our
beliefs about the greater relevance of some
aspects of response than others. Two dif-
f erent ways of saying yes are considered
equivalent. This matter is discussed in
greater detail by Meehl [87, Ch. 8].
For any considerable number of items
to be manageable, there must again be a
decision that certain groups or patterns of
response are equivalent; in principle, this
decision does no more violence to the data
than the one already taken. It is at this
point that I would apply Tukey’s sugges-
tion that we utilize theoretical (or at least
substantive) considerations. The choice of
a structural or statistical model, here
advocated to be based on psychological
considerations, automatically reduces dra-
tically the number of response patterns
which are considered different. For ex-
ample, with a cumulative model scoring
plus on any three keyed items is equiva-
ient to scoring plus on any other three
keyed items. The net effect of ultra-
empiricism is that data reduction, choice
of intervening variables, takes place in the
dark—"dichotomize every MMPI scale at
the median"—instead of in the light of
theory.

4. Use of structural models

In view of the relative novelty of the
concept of structural validity, an exhaustive
list of possible structural relations prevail-
ing among the several manifestations of a
single trait is not in order. The purpose of
this section chiefly is to point out that
psychological theories postulate a variety
of such structures. The kinds of structure
explored above have been classified as
cumulative models, class models, and dy-
namic models. While cumulative models
differentiate individuals with respect to
degree and class models differentiate them
with respect to kind, use of scatter in diag-
osis implies that either the degree of
structure (intra-functional scatter) or the
nature of the structure (inter-functional
scatter) is itself what differs among
individuals.

Much of what has been called structural
time in contemporary psychometrics has
not been included in the foregoing dis-
ussion. The reason lies in another termino-
logical misfortune: at least two different
kinds of structure are involved. That to
which the present paper refers is the struc-
ture which subsists among the various
manifestations of a trait. A name for this
kind of analysis might be score-structure
analysis.

Most of the work of Guttman and
Coombs and in the field of factor analy-

has been thought of as analysis of the components which contribute to the causation or formation of tests responses or scores. This kind of analysis may be called component structure analysis. (Lazarsfeld's latent structure analysis is similar to score-structure analysis.) While such analyses have been conceived in terms of components, the data have, of course, been the same as for score-structure analysis, and the formal models and their properties may prove to be of application in a different manner than their originators intended.

Guttman's [50] simplex theory, an aspect of radex theory, which is a kind of generalization of factor analysis, has been explicitly worked out both in terms of component analysis and of score-structure analysis.

To analyze the manner in which the component traits determine responses and scores is a more fundamental enterprise than simply studying, which responses go together in some fashion. The former pursuit is beset with difficulties. The structural component of validity, as conceived herein, is not concerned in the first instance with the mediational pathway of the observed responses. Such mediational pathways are part of the "theory" which it is hoped that objective tests will illuminate. The manner of achieving that illumination is the subject matter of the present monograph and its predecessors [20, 92, 60]. Such mediational mechanisms as psychological theories have postulated are often far more complex than can be accommodated by present component models. Such mechanisms as condensation, displacement, isolation, and reaction formation elude not only additive models but also the more complex models of Coombs (compensatory, conjunctive, disjunctive) [15] and Guttman (simplex, circumplex, radex) [30, 51]. With further development of the theory of objective test behavior and further development of component models, the latter may better serve the former.

It seems unlikely, though, that the path from data to theory will be greatly illuminated by single mathematical coups, however brilliant. Multiple factor analysis has an enormous advantage over recently proposed models. The conditions for making inferences from data, as formulated, e.g., in a recent paper on simple structure by Tucker [110], are the outcome of mutual criticism of many workers over long periods of time and in connection with a wide variety of substantive problems. Work of Guttman, Lazarsfeld, and Coombs is accompanied by no such clear-cut rules for inference; indeed, escape clauses are frequent, such as, "Sampling errors will not be considered."

The reader is urged to keep the following questions in mind in utilizing or evaluating the use of structural models:

Does the chosen structure conform to what is known of non-test manifestations of the putative trait?

Is the degree of structure or degree of conformity to the model quantitatively evaluated?

Does the model impose structural characteristics on the data? To the extent this is true, no theoretical conclusions can be drawn from the structure.

Is the model used for selecting data? If so, degree of structure should be evaluated on a new sample not so used.

Are the parameters of structure (number of factors, number of classes, etc.) uniquely determined? To the extent that they are not, caution must be exercised in ascribing theoretical importance to the results.

Proponents of various structural models sometimes study narrow or even artificial kinds of data, then indicate with a wave of the hand that all other kinds of data will also be illuminated by the given model. Periodic reviews of structural theory should encourage wider and more discriminating use of available models. Nor will the light shine in only one direction. One can only deplore the presentation of psychometrics in terms of hypothetical monsters whose test answers are determined by the spinning of internal roulette wheels [66].

The surest bet in the psychological:

C. EXTERNAL

While the 1 structural crit of a test we Technical Rec. have both been treated of external or treated. Many cussed recent reviewed.

In discussing components, responses to in individual items or external crit, the heading (correlation with or of construct) pattern necessary about the struc or about the structure. That is, in a total score is plus, an add indifferent count for sor psychologists measure dyme with its Impli ture, is not a an intervening

External via various ways. dations use a and predict appear to be sequential. Bt now X is psy dieting with become psy cive validity a the distinction. Another di compares the
factor analysis has over recently prohibitions for making as formulated, e.g., simple structure by outcome of mutual orders over a long connection with active problems. Work, and Coombs is in clear-cut rules for sype clauses are freo errors will not be to keep the follow-

ad in utilizing or structural models:
structure conform to non-test manifesta-
tive trait? ucture or degree of model quantitativelypose structural char-
data? To the extent theoretical conclusions in the structure.
or selecting data? If ture should be evalu-
empirical not so used.. of structure (number per of classes, etc.) ed? To the extent at caution must be ibing theoretical im-
ous structural models ow or even artificial facilitate with a wave of er kinds of data will by the given model. f structural theory er and more discriminable models. Nor will ly one direction. One presentation of psychohypothetical monsters re determined by the roulette wheels [66].

The surest beacon for psychometric theory is real involvement in the solution of psychological problems.

C. EXTERNAL COMPONENT

While the problems of substantive and structural criteria for the construct validity of a test were treated sketchily in the Technical Recommendations and by Cronbach and Mehl and have consequently been treated at length above, the problem of external validity for validity was ably treated. Many aspects of the problem discussed recently will not be repeated or reviewed.

In discussing substantive and structural components concern has been with responses to individual items. While individual items may be studied in relation to external criteria, most of what comes under the heading of external validity concerns correlation with total score. The method of constructing a total score from the item pattern necessarily implies a commitment about the structure of the items, and thus about the structure of the trait measured. That is, in a cumulative test, where the total score is the number of items scored plus, an additive model is implied. The indiscriminate use of this model may account for some of the difficulties which psychologists encounter in attempting to measure dynamic traits. The total score, with its implied commitment as to structure, is not a datum of observation but is an intervening variable.

External validity may be subdivided in various ways. The Technical Recommendations use a temporal division, concurrent and predictive validities. This division appears to be almost arbitrary and inconsequential. But determining whether right now X is psychotic is different from predicting whether at some future time X will become psychotic. The terms discriminative validity and predictive validity convey the distinction.

Another division of external validity compares the relation to other test scores with the relation to non-test behavior and other non-test data. By relating the test scores to other tests, one can make indirect use of whatever is known of the validity of the other tests. Factorial pattern comes under this heading. Surely no test, however, is acceptable for clinical use unless it is in some way tied to a non-test criterion, whether that be behavior ratings, group differences, or whatever. The warning of the Technical Recommendations [121, p. 15] is cogent here: the test must show relevance to non-test behavior, but it need not be equivalent to non-test behavior.

Another subdivision of external criteria is into those which are predicted to show a positive (or negative) relation to the test score and those which are predicted to show no relation to the test score. The problem of variables which ought not to show relation to the given test score is that of distortions of measurement. Distortions are errors of measurement which are correlated with true scores or with other obtained scores rather than being random with respect to all other scores as classical test theory assumes. An example of a distortion is a response set [17]. A similar example is the IBM answer-sheet-marking factor found by Whitcomb and Travers (personal communication) to overshadow other effects which they wished to study. Facade can act as a distorting factor in studies which are intended to measure other personality traits; since it is found so ubiquitously, it should be studied more thoroughly in its own right. All of the factors responsible for secular trends in test responses, to be discussed under Secular Trends in Test Behavior, are also distortions, as are unfinished items in non-speed tests. Demonstration of negligible relationship with known sources of distortion is an essential, not an optional, step in test validation.

Cronbach and Mehl [20] discussed correction for distortions of measurement in terms of suppressor variables. Recently Brogden [9] has proposed a method of constructing forced choice items which
makes use of the principle of the suppressor variable. The objection to suppressor variables is, of course, that they introduce another fallible score and thus another source of error variance. Loewinger [72] has proposed an alternative approach of selecting originally those items least weighted with distortions.

Eysenck [28, 29] has proposed a method, called “criterion analysis,” which combines external validation and study of internal structure. Briefly, he introduces into a factor analytic study a measure which represents the criterion. The tests are factored by any of several methods, and the axes rotated so that one axis coincides with the criterion measure. His method is therefore an alternative to simple structure as a principle for rotation of axes. Sidestepping the technical problems, some of which are discussed by Lubin [79], the question arises how the method of criterion analysis relates to the two steps of ascertaining structural units and subsequently analyzing external correlations. Is the same thing accomplished, something more, or something less?

One may note, first, that complete dependence on factor analysis restricts one to an additive structural model, but this is perhaps a minor point. In some examples of criterion analysis quoted by Eysenck there is clear evidence of significant distortion in the criterion. For example, groups which were intended to be matched except for the fact that one group was rated as neurotic and the other was a normal control turned out to be significantly different in age and intelligence. Rotation towards such an axis produces a melange of neuroticism, age, intelligence, and who knows what else. Eysenck fails to recognize that such flaws in criterion groups and corresponding distortions in criterion measures are the rule rather than the exception. In many problems control groups are almost a contradiction in terms, or, as Rogers, et al. [94], found, somewhat destructive of the purpose of the study. Such difficulties in external criteria led to the extension and revision of the concept of validity in the direction of construct validity.

The regularity with which measures of motor control and speed turn out to be the most promising measures of neurosis in studies under Eysenck’s direction induces the suspicion that age and/or general physical condition is the chief component of his “neurotic tendency” factor. In one major study [29, Ch. 4] a measure of intelligence was more highly related with the non-introtic-normal criterion than any other measure except one questionnaire, a fact somewhat concealed by his ad hoc explanations. Neither criterion analysis nor any other computational gimmick takes the place of careful consideration of possible sources of distortion.

While Eysenck’s method of criterion analysis seems to be a step backwards towards criterion-oriented validity, it does point to a weakness in attempts to establish the existence of traits by means of factor analysis alone. It seems reasonable to require that complete validation of any test include a demonstration of some nonzero relationship with a non-test variable. Cronbach and Mehl specified that validity must include some external relationships. They did not specify non-test variables, but the illustrations adduced in their paper appear to indicate sympathy with such a requirement.

In Section B of this chapter, choice of structural model was presented as an intuitive problem. Magnitude of external correlations may help to decide between alternative structures. In Measurement and Prediction [97] there is record of attempts to find scalable aspects of neurotic tendency. A clinician might have told the investigators that neurosis is far too variable in its manifestations to conform to a scale model, but apparently none did. There were several sets of items which proved to be scalable, but such items were extremely poor at different normal soldiers. Somatic complaints adequate was not scaleable calls a quasi method best be methods, that summing low into. Even where the central interest vide the court

SECULAR TREND

What has been far may be cal. It presents in theory for context without essentials or parallel traditional the that deals with assimilated to component of reliability thec stability of te and does not cannot, however bypassational theory of reasons.

A. CIRCULAR RELIABILITY

Consider the ity. On a prev have argued the only in a circ definitive sum has become was first made derives the be terms of a def in terms of a derivations be summation or score is the s.
Poor at differentiating neurotic from normal soldiers. The one subtest (psychosomatic complaints) which was more or less adequate at differentiating neurotics was not scalable but formed what Guttman calls a quasi scale. Very likely such items would best be handled by classical test methods, that is, a cumulative model assuming low intercorrelations between items. Even where the structure of the items is of central interest, external correlations provide the court of last appeal.

SECULAR TRENDS IN TEST BEHAVIOR

What has been presented in this paper so far may be called a theory of the first test. It presents in rough outline a complete theory for construction and evaluation of a test without reference to test-retest coefficient or parallel forms of tests. Part of the traditional theory of reliability, the part that deals with homogeneity, has been assimilated to the topic of the structural component of validity. The other part of reliability theory, the part that deals with stability of test scores, has been omitted and does not appear to be needed. One cannot, however, propose a test theory which bypasses the major part of traditional theory without serious presentation of reasons.

A. CIRCULARITY OF CLASSICAL RELIABILITY THEORY

Consider the statistical theory of reliability. On a previous occasion [69, Ch. 1] I have argued that reliability can be defined only in a circular manner. Gulliksen’s [43] definitive summary of test theory, which has become available since the argument was first made, illustrates it well. Gulliksen derives the basic equations twice, first in terms of a definition of random error, then in terms of a definition of true score. Both derivations begin, of course, with the assumption or definition that the obtained score is the sum of true and error scores.

Under the heading, “Definition of random errors,” the error score is defined as having a mean of zero, zero correlation with true score, and “the correlation between errors on one test and those on another parallel test is zero” [43, p. 7, italics in original]. Under the heading, “Definition of parallel tests in terms of true score and error variance,” Gulliksen states, “For two parallel tests, the errors of measurement are equal” [43, p. 12, italics in original]. Thus parallel tests are needed as part of the definition of error scores, and errors are needed as part of the definition of parallel tests.

In the following chapter, derivations are in terms of true score. True score is defined as the limit of the average score on a number of parallel tests, as the number increases without limit. Parallel tests are defined as tests equal in observed means, standard deviations, and mutual intercorrelations [43, pp. 28–29]. Reliability is then defined as the correlation between parallel tests [43, p. 31, footnote]. Thus parallel tests are defined in terms of their correlation (reliability), and reliability is defined as the correlation between parallel tests. It is not surprising that a theory which begins with a circularity ends in paradox [71].

The basic difficulty in the theory of reliability can be stated other ways. The true score is defined as the limit of a series which may not in fact converge, or, if it does converge, is not approximated usefully by the first term in the series, which is the term whose meaning is at stake. Or, reliability is defined in terms of a set of operations, to wit, repeated testing with no effect of repetition, which cannot in the nature of things be performed.

To circumvent or ameliorate this basic contradiction various methods of estimating reliability have been employed. There has for a long time been some recognition and recently widespread recognition that estimates of reliability based on a single administration of a test are estimates of something completely different from what is estimated by a test-retest coefficient. That
the same statistical theory of reliability should continue to be used for both kinds of coefficients is remarkable testimony to the obduracy of psychometricians. Correlation of parallel forms of tests combines some of the advantages and some of the disadvantages of test-retest and single-form reliabilities and, in addition, involves the circularity of parallel forms being defined in terms of the very correlation which they will then be used to estimate.

Culliksen says of the parallel forms method of determining reliability: "Generally speaking, this method is best, provided that we can regulate the interval between the two tests and the activity of the subjects during that interval so that the influence of practice, fatigue, and other similar effects will be negligible" [43, pp. 214–215]. The question arises: for what kinds of psychological tests has it been established that influences of practice, fatigue, boredom, sophistication, and other temporary or cumulative influences have a negligible effect on the second test? It is probably true, as Culliksen claims, that such effects on test behavior, which will here be called secular trends, can be detected in terms of change either in mean or in variance. But traditional test theory assumes that secular trends in test behavior do not exist, and most reliability coefficients are reported without reference to whether they have or have not occurred.

To belittle the advance which reliability theory represented over the earlier naive view of test scores would be both folly and impropriety. The recognition that the obtained test score was an imperfect estimate of something more fundamental was a tremendous step forward. The various coefficients for estimating reliability and the statistical theory of reliability arose in attempting to assay how well obtained scores succeeded in measuring the more fundamental or "true scores." The import of the preceding chapters of this monograph is that recent developments in test theory, particularly the concept of construct validity, enable us to conceptualize what the obtained score is an estimate of and to evaluate how good an estimate it is without reference to a retest or a parallel test.

The basic assumption of reliability theory, which implies that secular trends do not exist, has been carried over into a number of recent contributions to psychometrics. Guttman [45] has written papers on estimation of test-retest reliability coefficients; however, the assumption that there is no effect from repeating a test does not appear to be incorporated into his theories of scale analysis, of image analysis, or into radex theory. Coombs and Lazarsfeld, however, have incorporated the classical assumption into their thinking more essentially. Lazarsfeld [66] uses the term "brainwashing" to help his readers conceptualize what is assumed to take place between test and retest. Anderson [3], however, has presented a computational technique for latent structure analysis which does not require estimation of item reliabilities.

8. THE PROBLEM OF SECULAR TRENDS

Consider this possibility. A test of ability given without forepractice proves to have high predictive validity, but test-retest correlation is low. Given with considerable forepractice the test-retest coefficient is high but the nature of the test has changed so that predictive validity is low. Here is another "attenuation paradox" [71], i.e., a set of experimental conditions under which raising reliability lowers validity, contrary to the relationship stated in the classical correction for attenuation. The example is by no means implausible. It was proposed by Thorndike [102] in 1919. It demonstrates the intimate relation between secular trends and the validity problem.

The necessity of conforming as far as possible to the assumptions of reliability theory has led to a neglect of and glossing over of the problem of secular trends in test behavior. There is every reason to suppose that in general they occur. The "theory of the first test" can ignore them. But in practical and also in research situations retests and parallel forms, most of the time, must be used. Overall, all of the tests and also within the same test, the coefficients of isolation as to the condition of the test, having been determined, have been isolated.

One reason is the topic of secular trends. The idea that test behavior may change over time is in other studies related to the change in the individual's understanding of test behavior, and the individual's attention towards a therapeutic approach.

A major concern in the literature on variation has been the response variability. The spontaneous variation consists of various components, and it is assumed that not all spontaneous variation is present learning, and is not excluded. Type of the stimulus situation of rigidity, and previous types of variation in retests not a function (Type 1), the reliability thereafter. Fiske that such various correlations, and somewhat at a higher level of investigation, the assumption of isolation is not assumed is...
and parallel forms are often necessary. Second tests, whether retests or parallel forms, must be interpreted with respect to most or all of the factors bearing on first tests and also all of the factors influencing trends in test behavior as such. Thus coefficients of stability, when properly identified as to the conditions under which they were obtained, have an important place in test theory. They belong, however, to "theory of the second test." On occasion results from further testings will also be available, as in longitudinal studies.

One reason for the importance of the topic of secular trends is that such trends create artifacts, either spurious stability or spurious change, in research primarily directed toward study of stability and change in other traits. Thus the topic is intimately related to the subjects of trait consistency, developmental changes, intra-individual differences, and pathological and therapeutic processes.

A major conceptualization and review of the literature on intra-individual response variation has been made by Fiske and Rice [30]. They separate intra-individual response variation into three types. Type I consists of variation in response due to spontaneous change in the organism and is assumed not to depend on the order of presentation of stimuli. Type II includes variation which may be influenced by the order of presentation, but effects of fatigue, learning, and cyclic change are arbitrarily excluded. Type III includes changes where the stimulus situation changes, as in studies of rigidity, and is included to throw the previous types into perspective. Insofar as variation in response is spontaneous and not a function of order of presentation (Type I), the assumptions of traditional reliability theory would appear to be supported. Fiske and Rice, however, believe that such variability is lawful and has correlates, and that belief appears to be somewhat at variance with the traditional assumption of random error; the contradiction is not direct, for the traditional assumption is concerned with a quantity, Fiske and Rice with its standard deviation. It is not clear how rigorous were the standards for deciding whether a given study exhibited Type I or Type II variation. (Indeed, the classification of a study, or even the existence of the defined types of variation, represents a complex inference. It would appear generally desirable for review articles to adopt less disputable categorizations of studies.)

Type II variation corresponds closely to what is here called secular trends. However, systematic factors such as fatigue and learning are not excluded from secular trends insofar as they can produce distortion in measures of other traits. Despite the heroic proportions of the Fiske and Rice review, which had 233 references, important evidence for the existence of secular trends was omitted, such as evidence for rise in IQ with repeated testing, even when the tests are as much as a year apart.

Among early papers on systematic changes on retest for ability are those of Thorndike [102] and Adkins [1]; neither is mentioned by Fiske and Rice. Windle [115] has reviewed the literature on "Test-retest effect on personality questionnaires." He presents a table of 41 studies of retest of untreated groups; of those 41 studies only 4 are listed in the bibliography of Fiske and Rice's paper. The general trend of the studies reviewed by Windle is for retests on personality inventories to show improved adjustment.

Bayley [4] in a recent review has shown that increments in measured intelligence where the same individuals are retested exceed previous expectations, even when the retest occurs after a considerable time lapse. She acknowledges that practice effects probably account for some of the increment but lays greater stress on the possibility that intelligence continues to develop during maturity.

Recognition that systematic changes occur on retest has coexisted with classical reliability theory over a period of many years, with only rare recognition of the contradiction between fact and the assump-
tions of theory. Clearly there are questions here which need clarification by further evidence or by re-examination of existing data. The concept of secular trends in test behavior is needed to prevent dependence on traditional test-retest correlations from obscuring substantial problems, those of changes in means and variances.

C. IMPLICATIONS FOR CONSTRUCT VALIDITY

That there is no received method for dealing with secular trends is borne out by inspection of the Technical Recommendations. Secular trends are mentioned just once, in connection with stability of scores: "The manual should report changes in mean score as well as the correlation between the two sets of scores," [121, p. 232]. That requirement is considered essential, but there is no follow-up. What should be done in case there is a sizeable mean change from test to retest?

The common belief, explicit in Peak and not disavowed in the Technical Recommendations or Cronbach and Meehl, is that knowledge of stability contributes to our confidence in the construct validity of the test because we ordinarily are interested in traits which have some longevity; stability should not exceed, however, whatever stability might reasonably characterize the underlying trait. The traditional correction for attenuation is often interpreted as a precise statement of relation between stability and validity; however, it belongs to the part of psychometric theory which treats coefficients of homogeneity (such as split-half correlation) and coefficients of stability (such as test-retest correlation) as identical.

The supposed connection between test-retest (or parallel forms) stability and construct validity is, I submit, a non sequitur. The basis for the non sequitur is failure to recognize the fact that the first and the second tests may, and in general must be assumed to, bear different relations to the underlying trait, just by virtue of being first and second. This topic is another aspect of the "psychology of objective test behavior." In the case of projective tests, secular trends in test behavior are so conspicuous that the notion of test-retest stability is often not applied to them [16]. Yet secular trends of a less conspicuous sort are regularly found in other kinds of tests; the difference is one of degree.

Suppose a mean gain of 5 raw score points is found on retesting children with a certain test in a given age range. What procedure should the test user follow? Should he subtract five points from each second test and then refer to norms for the first test? The Technical Recommendations do not say. So doing would ignore any possible change in variance on retest. Separate norms for retests would seem more defensible. Failure to recommend separate norms for retests is perhaps the only serious criticism that can be made of the work of the APA Committee on Test Standards.

Perhaps, however, the implication of the Technical Recommendations is that if the change in mean score from test to retest is appreciable, the validity of the test is open to question. But if the correlation between test and retest is much less than unity, validity of test and retest may differ considerably.

Assume the validity of the first test is investigated first. Neither change in mean score nor low correlation between test and retest places any restriction on the validity of the first test. If the test-retest coefficient is very high, then the second test may be assumed to have similar validity to the first, provided care is taken to use retest norms. Since high correlation is consistent with sizeable changes in mean and standard deviation, referral of retests to first test norms may seriously impair the validity of resultant inferences.

Occurrence of an appreciable mean change does not in itself imply any decrement in test-retest correlation. Intuitively, however, one assumes that some factor must cause the mean implies a factor in the does not influence this reasoning one sizeable mean change test-retest correlation such coefficients do not rule out large discrepancies the two tests with other variables.

In conclusion, if the test-retest coefficient of changes in mean to retest has direct validity of the first test can properly be done since attenuation of test-sec correlation between the changes in meaning are negligible. is, from the point validity, a new test and, especially, st

ALTERNATIVE APPROACHES

The title of the paper provided that as the length of this monograph the cathexis of the thorough review be organizing the field would not mislead major predecessors; recognize that the intangible of the contrast rather than the evaluation.

A. OTHER KINDS

Approaches utilizing projective techniques, from consideration to relate such test to discussion. Consider
须是态度的客观性问题。态度的客观性问题存在，但是需要进一步研究和理解。
although not meaningless for projective tests, is difficult to establish. Wittenborn [117], again, has devised some approaches to the problem of the structural validity of certain Rorschach scoring categories. Whether he has satisfactorily solved the difficult methodological problems is not entirely clear. The substantive component of validity, although used in relation to objective tests as referring to items, appears to be meaningful when applied to interpretation of Rorschach scoring categories.

Schafer [95], on occasion, uses the sequence of responses in a Rorschach administration as a map of the personality dynamics of S. The rules for such inference are not at present sufficiently explicit so that group differences can be clearly predicted. Empirical verification of the rules is still not planned for. This kind of interpretation can be compared with the notion of structure as used in the present paper. The suggestion here is that there are populations with respect to which one has certain intuitions about the structural relations of the several manifestations of one trait. This structure should also obtain in the several items which comprise a test of that trait. The same two assumptions appear to be made by Schafer, but his technique skips the step of finding those items which best conform to the given structure and instead utilizes structural (sequential) differences as measures of trait differences. Any non-equivalence in the stimulus situation preceding the several responses must be taken into account intuitively.

Interpretation of response sequence may also be compared to the notion of secular trends in test behavior. Again there is an assumption of the equivalence of the several stimulus situations. Except for this instance, there are not many examples in psychological testing of constructive use of factors making for secular trends in test responses.

A recent study by Wittenborn, et al. [119] is of interest both because it utilizes data from interviews in a manner formally similar to objective test data and because Wittenborn has evolved a method superficially similar to that advocated in the present monograph. The differences between Wittenborn's method and that of the writer should sharpen the focus of the present argument. The purpose of Wittenborn's monograph is to demonstrate that interviews yield data from which scores can be obtained which are usable in the same manner as ordinary test scores. He speaks of standard "bits of information" derived from interview protocols. The phraseology suggests the notion of items as observations as opposed to miniature measurements, as developed under Relation of Test Behavior to Theory, Section C, above. Wittenborn, however, studies the interrelations of such items by means of tetrachoric correlation, a coefficient which assumes not only that each item is actually a measurement of an underlying continuum, but also that the continuum is normally distributed, the correlation between any two items is characterized by linear regression, and so on.

Further, Wittenborn searches for clusters among the items of information scored from the interviews. Unfortunately, he makes no use of statistical methods worked out for this problem, such as the method of Wherry and Winer [114] or that of Loewing, Gleser, and DuBois [75]. The latter method, in particular, provides formal solutions for two problems: when to stop adding items to a cluster and when two clusters should be combined. Wittenborn does not appear to have satisfactory solutions to these problems. For example, he presents two separate clusters whose intercorrelation is .56 but whose self-correlation is in each case .44. Although the split-half correlation reported is less appropriate as an index of homogeneity than one based on the Kuder-Richardson Formula 20, they are probably not far apart in magnitude. These data strongly suggest that the within-cluster item intercorrelations exceed the between-cluster intercorrelations, which surely is contrary to the author's intention.

Finally, Wit was taken into account in the present intention of the preface. The procedure now an interim monograph we are considering would be a major clusters and a major cluster would be ignored, which are given in which a method of Components and Clusters are presented, without some check on the statistical significance of clusters or the like.

B. OTHER KI

The Berkel personality is of interest in the present test items. Wittenborn and others, empirical find the test resu very similar the type items with on the several by far the relational in the construct variables many contrib many controlling per form credit is given for vernon studies of a English precu st of ment ford [41] h factorial stu organization born cancer psychology.
Finally, Wittenborn admits that content was taken into account along with coefficients in formation of clusters. Now if the intention of his monograph had been to provide scoring keys for clinical use, this procedure would be excusable at least as an interim measure. But the purpose of the monograph was to demonstrate that scoreable clusters exist. For research purposes it seems imperative to separate the decisions which are guided by content from the decisions which are guided by numerical data. One method of doing so is outlined under Components of Construct Validity, above. Clusters are formed on the basis of data alone, without prejudice from content. Examination of content then serves as a check on the value and the interpretation of clusters or scoring keys thus derived.

B. OTHER KINDS OF ANALYSIS

The Berkeley studies on the authoritarian personality [2] exemplify the explicit utilization of theory in construction of objective test items. While the tests, F scale, E scale, and others, were modified as a result of empirical findings, it is not clear how much the test results yielded for theory in the Berkeley studies. Structural considerations were excluded in test construction. Likert-type items were used, introducing a spurious element into the intercorrelation of their several scales.

By far the chief instrument for using empirical relations of test behaviors to define constructs has been factor analysis. The many contributions of Thurstone are preeminent; perhaps in this country insufficient credit is given Spearman, Burt, and Thomson. Vernon [112], in summarizing factorial studies of ability, found support for the English predilection for hierarchically structured mental abilities. More recently Guilford [41] has derived from a review of factorial studies a new picture of mental organization. Other investigators, too, have been concerned with the implications for psychology of the results of factor analysis.

There is, however, some question whether factor analytic studies have entirely lived up to optimistic advance notices of their contributions to psychological theory. Alternative structural theories have been presented with equally optimistic advance notices, have less clear rules for making theoretical inferences, and have as yet yielded less for theory.

Suppose, as in the Q-sort technique, an S is given 100 first person statements, which he is to sort into piles according to how closely they characterize him. Does the distribution he arrives at differ from the distribution his neighbor arrives at in content or in structure? Neither notion seems clearly to apply. It is difficult to see what substitutes in the Q-sort technique for the demonstration in other objective tests that structure does exist, which implies not only a common trait underlying several responses but also a community of meaning in the reading of single items and test instructions. Relatively little use is made of responses in Q-technique, however. What is usually used is again an intervening variable, namely, the correlation between pairs of distributions obtained under different circumstances. These correlations are themselves treated as data and related to other variables, so that a hierarchy of intervening variables is established [94]. Relationship between the hypothesis tested and the data observed has then become tenuous indeed.

Finally, the reader will recognize that the approach of this paper has been cross-sectional and probabilistic-functional in Brunswik's [8] sense, or confined to "R-technique," if we may disregard for the moment Cattell's wish to confine the term to factor analytic studies. What of the alternatives developed by Cattell [11], Stephenson [98], and Mowrer [90], to wit, P-, Q-, O-technique, and so on? These techniques substitute tests or occasions as the dimension of replication for the more usual replication of people; in place of correlating tests, people or occasions may be correlated. The "covariation chart" in terms of
which the alternative techniques are developed is by itself, I believe, somewhat obstructive of progress. The feeling that it induces in some scientists, that any ways of collecting and collating data that are possible are also necessary, seems misguided. It is too much like the research plan of the mythical chemist: take substances from the storeroom in alphabetical order and place in the cyclotron. Where P-technique and Q-technique methods grow out of the nature of a problem investigated, they may well be the most appropriate methods, but that must be decided in specific context. As programs, their disadvantages seem to outweigh the advantages. The excessive time requirements of P-technique factor analysis will surely drive psychologists farther away from the generality of the population and into the company of special types of people. The basis for this conclusion is easily demonstrated by attempting to get the cooperation of various kinds of people for brief paper-and-pencil tests.

As the discussion of the structural component under Components of Construct Validity illustrates, the study of types and configurations is not the exclusive province of Q-technique, and the study of dynamic processes is not the exclusive province of P-technique. Many of the problems discussed above, such as the relation of secular trends to the validity problem, assume a different form in relation to alternative techniques.

Anyone who proposes a radical departure from traditional psychometric techniques must be prepared to assume the burden of proving the superiority of his methods to classical ones, for classical methods have clearly established their worth, at least in the field of ability measurement. But there is a lack of any coherent correspondence between classical psychometric theory and psychometric techniques; so pragmatic success does not support equally classical theory. The present monograph proposes a test theory which differs radically from the generally accepted one but advocates methods which are not widely at variance with classical methods. Considerations added in this essay do not, however, justify dogmatic rejection of more radical innovations of technique.

A PSYCHOMETRICS

A. THEORY

In summary, historical and litigious passages may be neglected in order to review what has been presented as an outline for a psychometrics. The basic concept is that of the construct validity of the test, the degree to which it measures some trait which really exists in some sense. Construct validity can be established only by convergence of several lines of evidence. Evidence for construct validity can be broken down into evidence that the test measures something systematic and evidence for the particular interpretation of what it measures. The degree of internal structure of the items and the magnitude of external correlations are the former, or psychometric, evidence; the nature of the structure, content of the items, and nature of the external relations are the latter, or psychological, evidence.

Test behavior is in the first instance responses to items. Such responses are both signs and samples. Because they are samples of behavior in general, they must be subject to the same laws as behavior. Because they are signs, inferences may be drawn from the organization of test responses to the organization of other behavior. Thus psychometrics must draw from but can also contribute to psychological theory.

There are three criteria for the construct validity of a test, mutually exclusive, exhaustive, and mandatory. These criteria are that the substance or content of the items shall be consistent with the proposed interpretation, that the structural relations of the items shall be consistent with the structural relations of non-test manifestations of the same trait, and that the external correlations of the test score shall not all be zero and shall be consistent with predictions based on what is trait. Each item of behavior rather measurement. Surgical or psychometric item response to be useful, now strated to have a psychometric measure must be developed a margin of error.

The reasoning is parlayed into measures of the test. Several items which have greater probability in the positive amount of the measuring a common by the mutual interaction. The sum of several scores which tend to the amount of the variance of the by the correlation even though for of variance detected. It is no as a trait or the observer according to the other particular distributions consistent with the normal curve may in fact that the scoring many item of error variance.

Full utilization and in rest further develop behavior and in with the rest of personality, what adaptive traits, a tests with different characteristics?

The foregoing theory of the first retest parallel also be available
based on what is known of the postulated trait. Each item response is viewed as a bit of behavior rather than as a miniature measurement. Surplus meaning, psychological or psychometric, is avoided in interpreting item responses. In order for a test score to be useful, however, it must be demonstrated to have at once psychological and psychometric meaning, that is, the test score must be demonstrated to serve as a measure of some trait, subject, of course, to a margin of error.

The reasoning by which observations are parlayed into measurement may be summarized for the classical quantitative case. Several items which measure such a trait have greater probability of being answered in the positive direction, the greater the amount of the trait. A cluster of items measuring a common trait can be detected by the mutual intercorrelation of the items. The sum of several such items constitutes a score which tends to be greater, the greater the amount of the trait. The proportion of variance of the total score which is determined by the common trait can be large, even though for each item the proportion of variance determined by that trait is small. It is not assumed that the underlying trait or the observed scores are distributed according to the normal or indeed any other particular curve. That many observed distributions conform more or less to the normal curve may be a consequence of the fact that the scores are obtained by summing many items, each largely composed of error variance.

Full utilization of objective tests in clinical and in research settings depends on further development of a theory of test behavior and integration of that theory with the rest of psychology: what levels of personality, what impulses, defenses, and adaptive traits, are accessible to objective tests with different formal and content characteristics?

The foregoing considerations relate to theory of the first test. In order to interpret re-test or parallel form scores, there must also be available a theory of the second test, which requires study of secular trends in test behavior.

B. METHOD

The program of test construction implied by the foregoing concepts may be summarized as follows:

1. The pool of items should be constituted so as to sample some area of content defined more broadly than the anticipated test. When feasible, all possible alternative constructs should determine the definition of the area of content. A wide and systematic sampling of the area of content, guided by the life-importance of sub-areas, is highly desirable.

2. The choice of the structural model for test construction should be based on what is known of the manifestations of the trait or type of trait measured in and outside of the test situation. Alternative structural models may be used with final selection based on empirical or theoretical criteria or a combination. The pool of items is administered to a normative sample and the best items are selected from the pool in conformity with the structural model chosen. Those items constitute the test or the scoring key. Degree of structure is ascertained by administering the test to a new sample.

Dr. R. M. W. Travers has called my attention to his recent work showing the existence of secular trends within a single test administration for certain kinds of test materials and has raised the question of whether such tests are excluded from the discussion. The discovery of secular trends within a single test is not, of course, entirely new; similar observations have led to the virtual abandonment of the split-half method of computing test reliability. The external correlations of a test score are what they are regardless of trends within the several items which contribute to the score. There seems no reason, therefore, to exclude such tests from the discussion. A complete and rigorous treatment of score-structural theory, which has not been attempted in this monograph, certainly requires consideration of the problem Travers has raised, but the major points of the present discussion will not be affected.
3. The test score is then correlated with external (test and non-test) variables, both those that are expected to show relationship and those not expected to show relationship (sources of distortion).

The empirical findings of steps 2 and 3 are examined for concordance with alternative theories, or explanations, or constructs. The minimum criterion for acceptable validation is that the interpretation of the test scores be over-determined. If a separate principle or explanation must be invoked for each line of evidence, validation is not convincing.

The present view is a kind of operationalism but certainly not the kind which states or implies that any set of operations defines a concept. Garner, Hake, and Eriksen [36] have suggested, in line with current versions of operationalism in philosophy, that only convergent operations define a concept. The present paper is an attempt to make such a view explicit in relation to test construction.

C. APPLICATION

For a detailed example of the application of concepts similar to those developed in the present monograph, the reader is referred to a recent article by Jessar and Hammond [60]. They treat at length the use of the Taylor Anxiety Scale as an instrument of psychological theory.

A fragment of some research by Dr. Blanche Sweet and the writer will illustrate a number of points. A large number of items covering everyday problems of family life was collected and administered to a number of groups, particularly mothers of college students and girls of college age, many of whom were not, however, students.

Item 130 reads: "130a. After all the sacrifices parents make, teen-age children should be grateful to them. 130b. Teenagers cannot be expected to be grateful to their parents." So are required to choose one of the alternatives. A naïve belief that behavior is directly translated into test response would lead one to expect that parents would tend to choose the former and adolescents the latter response. In fact, the trend is the other way, with the adolescent girls tending to choose the first alternative and the mothers tending to choose the second. The item belongs to a cluster whose predominant theme lies in the punitive versus permissive dimension. It is plausible that a group of young unmarried women would have a slightly more punitive and disciplinarian attitude than a matched group of mature women having had the experience of motherhood. A group of young women who had just enlisted in the Marine Corps were the most punitive group tested. A group of Vassar graduates, most of whom were also mothers, were the most permissive group tested.

The substance of the cluster makes sense, though many of the items obviously are not direct representations of observable behavior. A cumulative model seems adequate for the structure of this trait, that is, it seems reasonable to suppose that the wider the variety of situations in which the person chooses the more punitive alternative, the more punitive he is. Relationships with external variables, in this case group differences, are in concordance with the interpretation suggested by the content of the items.

Kinds of hypotheses that can be tested in such a course of test construction are:

(a) Those that concern organization of attitudes. Are individuals who are stern and punitive towards children equally rigorous in their demands on parents? Or, alternatively, are there "child-centered" and "parent-centered" people? Is authoritarianism a single trait? Or are there aspects of authoritarianism which vary more or less independently?

(b) Those that concern the relation of verbally expressed attitudes to personality structure. Granted that every single response reflects a variety of traits; do the clusters or themes among the items reflect consciously or unconsciously held attitudes? How superficial or fundamental in the

defensive are the attitudes?

(c) Those that concern attitude formation. For that young inexperienced or more disciplinarian women is confirmed. Do they control of their own if established tend to capacity for reason hence believe in most discipline?

Evidence for the hypothesises does not fit nice hypotheses for them. None of hypotheses has direct verbal behavior. Th conceived to lie in obvious or literal observable behavior in the of particular behavior traits. The common e metrics and naive mental-theoretical assume that only being. Circumstances largely unpredictable its propensities. Th metrics, as of our main within the be.

The example all closely related to :bach and Mehl's of test validation with the use of test buttons to psychokinesis settled as a method methods of testing logical hypotheses. this method of thec with experimental summary

Logically, the ki achieves is indepe
ne to expect that choose the former response. In fact, may, with the ado-
choose the first al-
ses tending to choose
elongs to a cluster
ne lies in the puni-
dimension. It is
if young unmarried
ightly more punitive
d than a matched
in having had the
ood. A group of
just enlisted in the
most punitive group
ar graduates, most
ners, were the most
cluster makes sense,
ems obviously are
ons of observable
model seems ade-
of this trait, that is,
suppose that the
ations in which the
re punititive alter-
ve he is. Relational-
able, in this case
concordance with
ed by the content
hat can be tested in
struction are:
rm organization of
 who are stern and
in equally rigorous
arents? Or, alter-
ild-centered” and
? Is authoritarian-
ere these aspects of
vary more or less
rm the relation of
ides to personality
very single re-
of traits; do the
ng the items reflect-
usly held attitudes?
ndamental in the
defensive and adaptive structure are such
attitudes?
(c) Those that concern the dynamics of
trait formation. For example, if the finding
that young inexperienced women tend to
be more disciplinarian than more mature
women is confirmed, other hypotheses will
be suggested. Do individuals whose con-
tral of their own impulses is not firmly
stablished tend to mistrust other people’s
capacity for reasonable impulse control,
hence believe in more or less rigid patterns
of discipline?
Evidence for the various kinds of hypoth-
eses does not fit neatly into compartments.
The hypotheses overlap, as does evidence
for them. None of the three kinds of hypo-
theses has direct reference to non-
verbal behavior. The validity of the test
is conceived to lie neither in the degree of
obvious or literal correspondence between
observable behavior and expressed atti-
des nor in the degree of predictability of
particular behaviors on the basis of the
test. The common error of classical psych-
ometrics and naively operational experi-
mental-theoretical psychology has been to
assume that only behavior is worth predict-
ring. Circumstances contrive to keep behav-
or largely unpredictable, however constant
its propensities. The focus of our psychom-
etrics, as of our psychology, should re-
main within the behaving person.

The example illustrates also a point
 closely related to a major point of
behn and Meehl’s paper, that the process
of test validation is virtually coterminous
with the use of tests for substantive contribu-
tions to psychology. What has been pre-
sented as a method of test validation is also
a method of testing some kinds of psy-
chological hypotheses. Other hands can assay
this method of theory testing in comparison
with experimental alternatives.

SUMMARY

Logically, the kind of validity a test
achieves is independent of the method of
test construction. If one asks, however, how
best to construct a test, the answer is that
each kind of validity contains by implic-
ation a program of test construction. The
programs implied by content validity and
classical (predictive and concurrent) valid-
ity are not appropriate for major test con-
struction projects. Only construct validity,
which aims at measuring real traits, prom-
ises tests which will both draw from and
contribute to psychology.

The lines of evidence which together
establish the construct validity of a test
refer to its content, its internal structure,
and relation to outside variables. A single
explanation or theory must encompass all
evidence, for construct validation to be
approximated.

Systematic factors affecting retests with
the same or parallel form result in secular
trends in test behavior. In general, secular
trends must be assumed to exist; classical
reliability theory assumes that they do not.
A method of test construction based on
construct validation can dispense with test-
retest and parallel form reliability.

A psychometrics with construct validity
as its central concept can be used as frame-
work for viewing many recent contributions
to psychometrics, some of which contribute
to a construct-oriented psychometrics and
others of which contrast with it.

REFERENCES

1. ADKINS, D. C. The effects of practice on
intelligence test scores. J. educ. Psychol.,
1937, 28, 222–231.
2. ADORNO, T. W., FRIENKEL-BRUNSWIK, E.,
LEVINSOHN, D. J., & SANFORD, R. N. The
authoritarian personality. New York: Har-
per, 1950.
3. ANDERSON, T. W. On estimation of pa-
rameters in latent structure analysis. Psyc-
4. BAYLEY, N. On the growth of intelligence.
5. BROGDEN, H. E. Variation in test validity
with variation in the distribution of item
difficulties, number of items, and degree
of their intercorrelation. Psychometrika,
1948, 11, 197–214.
22. Dorris, R. J., Levinson, D. J., & Hanford.
53. Harrower-Erickson, M. R. The value

and limitations of the so-called "neurotic signs." Rorschach Res. Exch., 1942, 6, 109-114.

69. Loewinger, J. A. A systematic approach to the construction and evaluation of tests of ability. Psychol. Monogr., 1947, 61, No. 4 (Whole No. 285).

77. Lord, F. M. Sampling fluctuations resulting from the sampling of test items. Psychometrika, 1953, 20, 1—22.

