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MULTIPLE REGRESSION IN PSYCHOLOGICAL
RESEARCH AND PRACTICE

RICHARD B. DARLINGTON 1
Cornell University

A number of common practices and beliefs concerning multiple regression are
criticized, and several paradoxical propertics of the method are emphasized.
Major topics discussed are the basic formulas; suppresser variables; measures
of the “Importance”™ of a predictor wvariable; inferring relative regression
weights from relative validities; estimatcs of the true validity of population
regression equations and of regression equations developed In samples; and
statistical criteria for selecting predictor wvariables. The major points are
presented in outline form in a final summary.

In recent years, elecironic computers have
made the multiple regression method readily
available to psychologists and other scientists,
while simultaneously making it unnecessary
for them to study in full the cumbersome
computational details of the method. There-
fore, there is a need for a discussion of
multiple regression which emphasizes some
of the less obvious uses, limitafions, and
properties of the method. This article at-
tempts to fill this need. It makes no attempt
to cover thoroughly computational techniques
or significance tests, both of which are dis-
cussed in such standard sources as McNemar
(1962}, Hays (1963), DuBois (1957}, and
Williams (1959). The discussion of signifi-
cance tests by Williams is especially com-
plete, as is the presentation of computing
directions by DuBois. The latter source also
contains many bagic formulas of consider-
able interest. Anderson (1958) gives a very
complete mathematical presentation of the
exact sampling distributions of many of the
statistics relevant to multiple regression.
Elashoff and Afifi (1966) reviewed procedures
applicable when some observations are
missing. Beaton (1964) described a set of
elegantly simple computer subroutines which
a FORTRAN programmer can use fo write
quickly almost any standard or special-pur-
pose regression program he may require.

1 For critical comments on preliminary drafts, the
author is indebted to J. Millman, P. C, Smith, and
T. A, Ryan, and to his students J. T. Barsis, W.
Buckwalter, H. Day, B, Goldwater, and G. F,
Stauffer. He is especially grateful to his student
C. 8. Otterbein, whose editorial and substantive
contributions amounted neatly to coauthership.

Some of the points made herein are original,
some have been derived independently by
several workers in recent years, and some
surprisingly little-known points were made in
print 40 or more years ago.

In general, the dependent or criterion
variable will be denoted by X, and the in-
dependent or predictor variables by X, X,
- =+, X,. The score of person i on variable X;
is symbolized by xy. The population multiple
correlation is denoted by R, ordinary correla-
tions by p, standard deviations by «. Popula-
tion regression weights are demoted by §,
with 8’ denoting the corresponding weights
when all variables have been adjusted to
standard score form. Sample values of these
parameters are denoted by R, #, 5, 8, and &'.

The purpese of the multiple regression
method is to derive weights 81, 82, -+, B»
for the wvariables X,, X3, -+, X, and an
additive constant e, such that the resulting
weighted composite )20, which is defined by
the multiple regression equation

Xo=BXy+ BeXo+ BuXg 4
‘i‘ |8ann+ o [1]

predicts & specified criterion variable X, with a
minimum sum of squared errors; thus X, cor-
relates maximally with X,. This paper deals
directly only with the linear additive model,
in which X, is a linear function of the
predictor variables. This restriction is more
apparent than real, however, since if desired
some of the variables in the equation can be
curvilinear or configural (interactive) func-
tions of other variables.
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Basic ForMuULAs ®

As described in standard works on the sub-
ject, the #» multiple regression weights 8y, 8.,
Bz, **°, Bx are found by solving a set of »
simultaneous linear equations in which these
weights are the unknowns. These equations
are the so-called normal equations of regres-
sion theory, although this term does not
imply any dependence on an assumption that
variables are normally distributed. The known
quantities in the normal equations are the
standard deviations of the » predictor vari-
ables and the criterion variable, and the inter-
correlations among these # + ! variables, A
change in the standard deviation of one of
the predictor variables will affect only the
-beta weight of that one variable, while a
change in the correlation between any two
variables will generally affect all the beta
weights.

After the 8s are found, the additive con-
stant « is chosen so as to make the mean of
the scores on .i’.] equal to the mean of the
scores on X,. The multiple correlation R can
then he found in any of several ways, of
which the simplest conceptually (though not
computationally} is to compute each person’s
score on AA’U, and then to correlate these
scores with X,.

If all predictor variables are uncorrelated,
then the above-mentioned procedures for com-
puting beta weights and R reduce to the
simple formulas

L)
Bi = poj —
a5

[2]
and
R = pol + poi + pot +- -+ pou? [3]

Ti we define the “usefulness” of predictor
variable X; as the amount R* would drop

2A number of points made in this paper arc
amplified and proven in a supplementary document
by the author entitled “Proois of Some Theorems
on Multiple Regression.”” Statements in the present
section are given as Theorems 4, 6, 10, 11, 12, and
13 of that document. Although the proofs are
not original in any important sense of the word,
the author has tried to simplify many of the
standard proofs to a level readily grasped by
students in an Iintermediate-level course in psycho-
metric theory, The document will routinely be sent
along with responses to reprint requests. Tt as also
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if X; were removed from the regression equa-
tion and the remaining variables appropriately
reweighted, then Formula 3 shows that the
usefulness of X; equals pg® when predictor
variables are uncorrelated.

Results analogous to some of those stated
ahove can be derived for the case in which
predictor variables are intercorrclated. Sup-
pose we have a regression equation predicting
X from Xy, Xy, + -+, X, Consider a second
multiple regression equation in which one of
the predictor variables X; {1 < j < ) iz the
dependent variable and the remaining # — I
predictor variables X, Xo, -+, X5y, Xji1,
-+, X, are the predictors. Let the residuals
in this second equation (i.e., the set of scores
obtained by subtracting each person’s score
on this regression function from his actual
score on X,) constitute the variable Xj,.
The variable X, is uncorrelated with all of
the variables used to construct the regression
equation predicting X;. Following Rozeboom
(1963) and others, X, is termed the com-
ponent of X; orthogonal to the other predictor
variables, or more simply the orthogonal com-
ponent of X;. (We shall later have occasion
to denote the component of X, orthogonal to
all the predictor variables—which component
is the residual in the regression equation pre-
dicting X, from those predictor variables—as
Xorp. The component of any predictor vari-
able X; orthogonal to the criterion variahle
X, will be denoted by X,y In the present
terminology, the partial correlation between
two variables X; and Xj holding m other
variables constant is the correlation between
the components of X; and X; orthogonal to
the other # variables.)®

The standard dewiation of X, is denoted
by ., and the correlation of X, with

available from the American Documentation Institute.
Order Document No. 9810 from the ADI Auxiliary
Publications Project, Photoduplication Service, Li-
brary of Congress, Washington, D. C. 20540, Remit
in advance 51.73 for microfilm or $2.30 for photo-
coples and make checks payable to: Chief, Photo-
duplication Service, Library of Congress.

3 Dunlap and Cureton {1930) called the correla-
tion between a wvariable and the orthogonal com-
ponent of another wvariable a “semipartial correla-
tion,” and MecNemar (1962, p. 167} called it a
“part correlation.” Both these terms emphasize its
similarity to the partial cerrelation.
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any variable X by ps.p. Then we can write
a formula for #; which is very similar to
Formula 2 but which applies whether the
predictor variables are intercorrelated or not:

8 L
= Pl-ip)
Fifp}

[4]
Turther, just as the usefulness of X; equals
pos® when predictor variables are uncorrelated,
so it equals pg 4% when predictor variables
are intercorrelated. There is no formula
quite so directly analogous te Formula 3;
in general it is no¢ true that

B? = poag®+ pose? -+ poonee)®

When # = 2, it can be shown that

PIL T pozpiz
Po-1p) = T i/

[5]

V1 — p1at
and that

!
1y = o1v] — pro

- [e]
Interchanging the subscripts I and 2 in
Formulas 5 and 6 gives py.ap and oggp;.
Substituting Formulas 5 and 6 in Formula 4
gives the familiar formula

o PoL " pmp1z G0

1 — ps

[7]

for the case in which # = 2. Analogously,
whenn = 2,

&1

7

_ Poz — Pmpiz o

o 1 — p1d

[8]

<]

When n = 2, the useful relation

B = pol® + pozem? = pot + puag?

follows directly from the fact that ppyp?
equals the unsefulness of X;. This result fits
intuitively with Formula 3 since X, and Xa,p,
(or X» and X,;,,) are uncorrelated variahles
which contain the same basic information
(and thuos yield the same prediction of X)
as X; and Xs.

SUPPRESSOR VARIABLES

This section deseribes suppressor variables
and criticizes the common belief that dealing
with them requires a modification of standard
multiple regression procedures. For simplicity,
the section assumes that each predictor vari-
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able with a nonzero correlation with X, fis
scored in the direction which makes that
correlation positive in the pepulation. The
scoring direction of variables correlating zero
with X can be chosen arbitrarily.

Although wvarious definitions have been
given (cf. Guilford, 1954; Horst, 1941;
McNemar, 1962), a suppressor variable is
here defined as a variable which, when in-
cluded in a regression equation in which the
variables have been scored as described above,
receives a negative weight when the equation
is derived in the population, (This definition
thus excludes variables whase negative weight
is the result of sampling error.) Since a vari-
able correlating zero with X, is allowed to be
scored in either direction, and since it will
receive a negative regression weight when
scoted in one of those directions if its weight
is not zero, then by our definition any vari-
able which correlates zero with X, but which
Téteives a nonzero weight can be called a
suppressor variable. Contrary to most previ-
ous definitions, by the present definition a
suppressar variable need not have a low or
zero validity, although in practice it usually

‘does.

Since the multiple regression method
chooses those weights, whether positive or
negative, which maximize the multiple cor-
relation, it necessarily follows that a sup-
pressor variable improves prediction in the
population when it is given a negative weight.
A typical example in which prediction is im-
proved by assigning a negative weight to a
variable might be a situation in which a
test of reading speed is used in conjunction
with a speeded history achievement test to
predict some external criterion of knowledge
of history. Since the history test is contami-
nated by reading speed, assigning a negative
weight to the reading-speed test would help
to correct for the disadvantage suffered by
a student with low reading speed who is
competing with faster readers.

To understand more fully the functions of
suppressor variables, it is helpful to examine
the exact conditions under which negative
weights appear. For . simplicity, regression
equations with only two predictor variables
Xy and X, and only the case in which X,
receives a negative weight, will be considered.

L= ©
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Let Xy denote the component of X
orthogonal to the criterion variable. X, can
be considered to measure the sources of error
in X,, that is, those aspects of X; which
prevent a perfect prediction of X, from Xi.
For example, consider a hypothetical modifi-
cation of the previous example in which read-
ing speed correlates zero with the criterion
variable, and is the only source of error in
the history test. If the history test were X,
then X, would measure only reading speed.
In reallife cases, Xj does not represent a
single source of error, such as reading speed,
but measures instead a composite of all the
sources of error in X;.

Ordinarily, the variable Xy, is not directly
measurable. However, suppose a second test
X, were available which correlated perfectly
with Xy, in other words, suppose X, were
a perfect measure of the sources of error in
X;. (For instance, in our hypothetical ex-
ample, suppose X» was a perfect test of read-
ing speed.) Then, by giving X, a negative
weight in a regression equation in which X4
had a positive weight, it would be possible
to subtract out, or correct for, or “suppress,”
those sources of error.

Generally, of course, a second variable X,
does not correlate perfectly with Xi... The
example should make clear, however, that X,
can be used in either of two ways, depending
on its characteristics: to measure X, directly,
or to measure Xie. Xo should receive a
positive weight if used the first way or a
negative weight if used the second way. It
will be shown that whether X» receives a
positive or a negative weight, when used in
a regression equation with X, depends upon
the ratio between its abilities to perform
these two different tasks; specifically, on the
1atio pa.1cey ! pog.

In a regression equation with two predictor
variables, Formula 8 shows that X, receives a
negative weight if

[9]

Some algebra shows that Inequality 9 is
equivalent to

Poz — Poifiz <0

£2.1¢a)
on2 Po1

21-1(r)

[10]
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The algebra here consists of using Formulas
5 and 6 to set

p1z — puipos
I
Vi — pot

F1{cr =

and

-
pri = v1 — po’

and then substituting these expressions in
Inequality 10, which then simplifies to To-
equality 9. These same two formulas can be
used to derive an inequality which Is similar
to Incquality 10, but which some readers will
find more meaningful. If both sides of In-
equality 10 are squared, then the resulting
quantities polg, pggz, PlL-1ich and p2-10e) equal
the proportions of variance in X; and X,
taecounted for” by Xo and Xy, respectively,
<0 that the formula is in terms of proportions
of variance rather than correlation coeffi-
cients. Some readers will prefer this alter-
native since ratios between proportions of
variance are more familiar than ratios be-
tween correlation coefficients.

Tnequality 10 provides the basis for a
clear and simple statement of the algebraic
nature of a suppressor variable. The left side
of Tnequality 10 is the ratio mentioned above,
showing the ahility of X3 to measure Xico
relative to its ability to measure X, The
right side is an analogous ratio for X, show-
ing the ability of X; to measure Xy relative
to its ability to measure X,. If the ratios on
the left and right sides of Tnequality 10 are
equal, then X cannot usefully supplement
X, in measuring either X, or Xy, so it
receives a zero weight. Normally, X, is a
better measure of its own sgources of error
than is Xa, SO p1-1.03, the numerator of the
right side, is normally larger than pa.ice), the
pumerator of the left side. Hence the fraction
on the right side is normally larger than the
fraction on the left. If this occurs, then X»
is more useful as a measure of X, than as a
measure of Xie,, 50 it receives a positive
weight. However, if Xz correlates so highly
with X1, that the left side of Inequality 10
is larger than the right (as a test of reading
speed would correlate highly with the error in
the history test in the ahove example), then
X, is more useful as a measure of X1, and
s receives a negative weight.
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Inequality 9 shows that in regression equa-
tions with two predictor variables, 82 is never
negative if poz is greater than or equal to pex
ot if both predictor variables correlate posi-
tively with X, and negatively with each
other. Further, 8. is always negative if poe
= 0 and g5 and po, are both positive.

When an equation contains more than two
predictor variables, any variable X, is a sup-
pressor if Inequality 10 holds when X is
replaced by X;, and X, is replaced by the
variable formed by dropping the jth term
from the multiple regression eguation which
uses all » predictor variables. This follows
from the fact that if the variable formed in
this way were used with X in a two-variable
regression equation predicting X, then clearly
the weight of X, in this equation would equal
the weight of X; in the regression equation
computed directly from all # variables. Thus
B; in the s-variable equation would be nega-
tive whenever 8; in the two-variable equation
was negative, which would occur whenever
Inequality 10 holds for that equation.

The multiple regression method considers
suppressotr relationships in that it chooses
the weights, positive or negative, which give
the highest multiple correlation, Hence, the
observation of negative weights in a sample
regression equation, indicating that suppres-
sor variables may be present, does not alone
imply that there should be a deviation from
standard regression procedures. However,
Gulliksen (1950) stated that negative weights
“should lead to a careful scruting of the
test and a consideration of the reasonableness
of such a finding [p. 330].” Although such a
sctutiny can often be attempted with con-
fidence in regression equations with two pre-
dictor variables, it is difficolt for an in-
vestigator to reach a conclusion about the
reasonableness of a negative weight in a
complex, multipredictor situation. For ex-
ample, consider a three-predictor situation in
which po1 = poz = .15, pos = .2, piz — 0, and
p1a = poa = .7. Although X is the most valid
single predictor and would hbe assigned a
positive weight when used in conjunction
with either X; or X, alone, it can be shown
that it is given a negative weight when X,
X., and Xg are all used together. Yet using
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X, in this way raises the multiple correlation
for all three variables to .5, while the highest
multiple correlation without negative weights
is only .21, using X; and Xs.

Thus, suppressor relationships appear in
situations in which a “reasonable’ interpreta-
tion of the relationship is extremely difficult.
Relationships among more than three pre-
dictor variables are even more complex.
Therefore, even if the improvement resulting
from using a negative weight were small,
it is difficult to imagine an investigator with
such faith in his ability to conceive of all
possible suppressor situations that he would
ignore the improved prediction resulting
irom the use of & negative weight.

MEASUGRES OF THE “IMPORTANCE” OF A
PREDICTOR VARIABLE

The present section deals with five differ-
enf measures of the “dmportance” of pre-
dictor variables; for variable X, the measures
are poi; B'F; poym?, which as we saw above
equals the usefulness of Xy; Bpo;; and a
measure proposed by Englehart (19368). Tt
will be recalled that 8’y was defined as the
weight given to X; when all variables have
been adjusted to unit variance, and that
the usefulness of X; was defined as the
amount R? would drop if X; were removed
from the regression equation and the weights
of the remaining predictor variables were then
recalculated.

When all predictor variables are uncor-
related, all five of these measures are equiva-
lent. The equivalence of the first four can
be verified merely by inspection of Formulas
2 and 3; the fifth will be discussed later. If
predictor variables are uncorrelated, each of
the five measures also equals the difference
(expressed as a proportion of the variance
of X,) between the original variance of X,
and the variance of X, in a subpopulation
whose membhers all have the same score on
X, (Tf this latter variance varies across
subpopulations, then an average is taken.)
Further, if any of the five measures is
summed across all the predictor variables in
a regression equation, the total is R% Thus
it is meaningful and useful to consider R? to
be the sum of the proportions of variance in
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the criterion variable “accounted for by,” or
“attributable to,” or “contributed by” each of
the predictor variables. The interpretation
is completely analogous to the interpretation
of results in analysis-of-variance designs.

In analysis-of-variance designs, the com-
plete independence of all the independent
variables is assured by the requirement of
equal or proportional cell frequencies (or by
the requirement of statistical adjustments,
such as those given by Federer and Zelen,
1966, designed to produce estimates of the
same parameters as those estimated with
equal cell frequencies}. ITn multiple regression,
however, there is no requirement that pre-
dictor wvariables be uncorrelated. This prop-
erty gives regression analysis a substantial
element of flexibility lacking in analysis of
variance. When predictor variables are in-
tercorrelated, however, the five measures of
importance are no longer equivalent, so that
the term “contribution to variance” suddenly
becomes very ambiguous. The different meas-
ures of importance do not even necessarily
rank order the variables in a regression equa-
tion in the same order. For example, con-
sider the case in which po = 4, pos = 44,
pos =23, p12= .8, p1a=0, and paa = 4.
Given these values, standard formulas show
that' R = .5. The three 8 weights computed
from these numbers are, respectively, .4, 0,
and .3, and the three decreases in R® used
as measures of usefulness are, respectively,
038, 0, and .050. Thus X; has the highest
B’ weight, X5 is most valid, and X3 is most
useful. Although in this example the variable
with the lowest 8’ weight, X, is also the least
useful, other examples can be constructed in
which this is not true.

The rest of this section attempts to explain
what meaning, if any, can be attached to
each of the five measures of importance. Of
the five, only 8';p¢; and Englehart’s measure
total to R? when summed across the variables
in a regression equation. Nevertheless, of the
five, these two will be shown to be of least
interest and value.

Squared Validity

Of the five measures, po® or the squared
validity, needs the least comment. It is the
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only one of the five measures unaffected by
the choice of the other variables in the
regression equation.

Beta Weights as Measures of the Importance
of Causal Relationships

For many purposes, & is of more interest
than 8’7 In the present discussion, they will
be considered equivalent, since either can he
computed from the other (provided the sign
of the weight is known) and since they rank
variables in the same order of impaortance,

Previous sections showed that beta weights,
like usefulness, are determined solely by the
characteristics of the orthogonal component
of the varizble under consideration. They
thus have little relation to validity and are
heavily influenced by the nature of the other
variables in the regression equation, Beta
weights can even change in sign as variables
are added to or removed from the equation;
one example was given in the section on
suppressors, another is given by Kendall
(1957, p. 74).

Tt was shown above that 8% (or 8'/) is not
a measure of the usefulness of X; when pre-
dictor variables are intercorrelated. The pres-
ent section describes a particular case in
which beta weights are nevertheless of con-
siderable interest as a measure of the “im-
portance” of a variable.

It is true that “correlation does not imply
causation.” In most cases, an investigator
cannot determine whether an observed correla-
tion between two variables X, and X, is due
to the efiect of Xy on Xy, or to the effect of
X: on X,, or to some comhination of effects
which might include the effects of other out-
side variables on hoth X, and X,. However,
there are cases in which some of these alter-
natives can be ruled out by the nature of the
variables involved; thus, if there is a correla-
tion between snowfall and traffic accidents,
il can be assumed that the traffic accidents
did not cause the snowfall. Tf a large enough
number of such causal hypotheses can be
eliminated, then there are certain situations
in which a multiple regression equation can
be used to estimate the importance of the
remaining causal relationships. Partly because
this technique has been used in cases in
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which it was not wholly appropriate, this sec-
tion attempts to make explicit the assumptions
necessary for the use of the technique.

Consider a sitvation in which (g) a given
dependent variable is affected only by a
specified set of measurable variables, (&) the
effect of each of these variables on the de-
pendent variable is linear, and (¢) the de-
pendent variable has no effect, either directly
or indirectly, on any of the independent
variables. In such a situation, consider a
linrear function of the causal wvariables in
which the weight of each variable equals the
causal importance of that variable; that is,
if increasing X; by 1 unit increases the
dependent variable by g units, then g is the
weight of X, This linear function will per-
‘fectly predict the dependent variable. Since
the multiple regression method computes the
weights which result in the best prediction of
the dependent variable, in this situation a
multiple regression equation computed in the
population necessarily computes the true
causal weights for the set of variables involved
in the equation, since these are the only
weights which result in perfect prediction.
Further, if an investigator has inadvertently
included among the prediclors a variable
which in fact has no effect on the dependent
variable, then that predictor variable will
receive a welght of zero.

Suppose now that the dependent variable
is determined partly by chance factors or by
nonchance factors which are uncorrelated
with all of the predictors which the in-
vestigalor uses. It can be shown that the
weights in a multiple regression equation are
unchanged by the addition of a new predictor
variable which is uncorrelated with all the
other predictors.* Therefore, the best possible
prediction of the dependent variable from the
causal measures used is still obtained when
the weight of each variable equals the true
causal effect of that variable on the dependent
variable, Hence the population multiple
regression weights still equal the true causal
weights, although the multiple correlation is
less than unity. And since sample heta
weights are unbiased estimates of the popula-

4 See Theorem 5 of the document cited in Foot-
note 2.
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tion beta weights, they can be employed as
unbiased estimates of the true causal weights.
The method can alsp be extended to handle
curvilinear or interactive effects by including
such terms in the regression equation,

Thus, the method assumes:

1. All variables which might affect the
dependent variable are either included in the
regression equation or are uncorrelated with
the variables which are included.

2, Terms are included in the regression
equation to handle any curvilinear or inter-
active effects.”

3. The dependent variable has no eifect on
the independent variables.

Since these assumptions are rarely all fully
met, the technique should be used with cau-
tion, Nevertheless, when they are met, it pro-
vides a technique for rationally inferring
causal relationships in complex situations
even though experimental manipulation of the
independent variables is impossible.

The technique is actually a variant of the
method of computing a partial correlation
between the dependent variable and each of
the indcpendent variables. In the regression
technique, however, the emphasis is on re-
gression weights rather than correlation co-
efficients. The advantage is that the final
conclusions are in the form, “Increasing X,
by 1 unit increases the dependent variable
by B; unite’”; for example, “Every inch of
snowfall causes, on the average, 15 addi-
tional traffic accidents.,” This is the most
useful form of a statement when the emphasis
is on cause and effect.

In any attempt to illustrate the method
by an example, valid questions can be raised
concerning the applicability of the assump-
tions listed above to that specific example.
However, as an illustration of the technique,
consider a study of the effects of different
weather conditions on the frequency of traffic
accidents., Suppose that each day, in a large
city, several measures of weather conditions
were recorded, and that the number of traffic

i Configural and curvilinear terms, however, can
produce complications in the interpretation of linear
terms. See Darlington and Paulus (1966) for a more
complete discussion,
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accidents in the city each day was also
rccorded. Suppose then that a multiple re-
gression equation was constructed to pre-
dict the number of traffic accidents in a day
from the various measures of weather con-
ditions that day. Despite the fact that weather
conditions cannot be manipulated at will, and
despite the fact that, say, humidity may be
correlated with temperature, the beta weights
in this regression equation would give in-
formation on the causal imporiance of each
aspect of the weather.

The questions which arise in conmection
with this example illustrate the types of ques-
tions which must be considered in any use of
the technique, For example, in connection
with Assumption 1 above, we must ask:
() “Does temperature have a positive beta
weight because vacations come in the sum-
mer, and people drive more during vaca-
tions?” (This could be handled by, say, using
number of accidents per vehicle mile as the
dependent variable.) (&) “Does an aspect of
the weather which has not been recorded,
but which correlates with some measures
which were recorded, affect accidents?” (This
would result in spuriously high beta weights
for these recorded measures.} Similar ques-
tions arise concerning the appropriateness of
Assumption 2, although Assumptien 3 seems
to hold for this example.

Whenever a causal relationship is estab-
lished in any branch of science, there is al-
ways the possibility of investigating the
causal relationships which mediate those
relationships found. This is true of the pres-
ent technique. Thus, if hot weather is found
to increase accidents, there remains for future
investigators the task of discovering whether
this is mediated by the effect of heat on the
alertness of drivers, on the reliability of
brakes, or on other factors. This considera-
tion, however, does not lessen the valve of
the original finding.

The method has been developed far beyond
the limits indicated here. More complete dis-
cussions by social scientists of this and re-
lated techniques can be found in Simon
(1957), Blalock ({1964), Monroe and Stuit
{1935}, Dunlap and Cureton (1930}, and
Burks (1926). The method was first de-
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veloped hy Wright (1921) in the biological
sciences, where it is known as “path analysis.”
Recent general discussions of the method
were given by Wright (1954) and by Turner
and Stevens (1959). At least one of these
should be read by anyone planning to use
the technique. Detailed recent discussions of
particular aspects of path analysis have been
given by Wright (1960a, 1960b) and hy
Turner, Monroe, and Lucas (1961). These
and the more general articles also give refer-
ences to further literature in the area. They
also discuss in detail techniques applicable
when some of the independent variables are
themselves affected by other independent
variables, The simple techmique outlined
above still applies in this situation, but the
weight given to each independent variable
measures only the direct causal effect which
that variable has on the dependent variable,
ignoring effects which operate indirectly
throngh the effect which the independent
variable has on other independent variables.

Usefulness

When the focus is on the prediction of X,
rather than causal analysis, usefulness is
clearly the measure of greatest interest. Use-
iulness actually has a closer relationship to
a partial correlation coefficient than does 8';
it can be shown that dividing the usefulness
of X; by 1 — R® gives the squared partial
correlation between X, and X;, holding all
other variables constant. Since 1 — R is con-
stant for a given regression equation, it fol-
lows that the usefulnesses of the predictor
variables in a regression equation are pro-
portional to these squared partial correlations.

It follows directly from Formula 4 that
#'; equals the validity of the orthogonal com-
ponent of X; (i.e., the square root of the
usefulness of X;), divided by the standard
deviation of the same orthogonal component
{(when all the original variables are expressed
in standard-score form). Thus, if two vari-
ables are equally useful, the one with the
larger B’ weight has the orthogonal com-
ponent with the smaller variance.

The hypothesis that a predictor variable
has zero usefulness in the population is
equivalent to the hypothesis that the variable
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has a population beta weight of zero, so the
significance tests of these two hypotheses are
the same. The parametric test of this hy-
pothesis is an F test, described in McNemar
(1962, p. 284) and elsewhere. The F value
given by this test equals 7.5, (which is the
sample usefulness of the variable in question),
multiplied by the fraction (N —n-—1}/
(1 — R?), This fraction is, of course, constant
for all the variables in a given regression equa-
tion, Hence the F statistic is equivalent to use-
iulness as a measure of the relative importance
of the variables in a given regression equation.
If a worker has access to a computer program
which computes this F value for each pre-
dictor variable (if the test available is a ¢
test, then ¢* equals F}, then he can readily
find each variable’s usefulness by dividing
F by the above fraction.

B'1poy

It can be shown that R? can be calculated
from 8 weights by the formula®

B = Bipor + Bapoz -+ -+ 8 avon

This formula has suggested to several writers
(Chase, 1960; Hoffman, 1960; personal com-
munications from several sources) that 8%pq;
must be a measure of the “importance” of
X;, since it totals to R? when summed across
all the variables in the regression equation,
and all measures of importance have this
property when predictor variables are un-
correlated. Ward (1962) raised a question
concerning the value of the measure; in de-
fense, Hoffman (1962) called it the unique
measure of the “independent contribution” of
X;. Ward’s position will be restated and elabo-
rated, since the present position is in basic
agreement with it,

Although it is the province of an author to
assign a name like “measure of independent
contribution” to any statistic he proposes,
this particular name has accumulated a good
deal of “surplus meaning” by virtue of the
powerful properties which it has when pre-
dictor variables are uncorrelated, as in analy-
sis-of-variance designs, where its meaning i
highly specific., Partly as a review, the fol-

8 Gee Theerem 9 of the document cited in Foot-
note 2,
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lowing is a list of meanings which “‘independ-
ent contribution” has when predictor vari-
ables are uncorrelated:

1, The squared validity of X;.

2. The usefulness of X ;.

3. B4

4, The amount the variance of the regres-
sion equation would drop if X; were removed
from the equation, expressed as a proportion
of ag?.

5. The amount the covariance between the
regression equation and X, would drop if X;
were removed, expressed as a proportion of
crnz.

6. The increase in the variance of Xop,
when X is removed from the equation, ex-
pressed as a proportion of o,°.

7. The average difference, expressed as a
proportion of oy?, between ¢,® and the vari-
ance of X, in subpopulations in which Xj is
held constant.

This list attempts to include all of the major
properties which most readers consciously or
unconsciously associate with the term “in-
dependent contribution.” It is thus of con-
siderable interest to note that B;pp; bas
none of these properties. As a minor excep-
tion, S'spe; has Property 5 if the remaining
variables in the regression equation are not
reweighted after removal of X, but this is not
a property of any particular interest.

Although all of the measures in the above
list do sum to R* when predictor variables
are uncorrelated, this fact alone does not
justify the use of a measure, simply on the
grounds that it sums to R? even when pre-
dictor variables are intercorrelated. It would
be better to simply concede that the notion
of “independent contribution to variance”
has no meaning when predictor variables are
intercorrelated. The meaninglessness of 8 go
as a measure of importance is further under-
scored by the fact that it can be zero, or even
negative, in cases in which X; contributes
substantially to the prediction of X,.

Englehart’s Measure

Englehart assigned a *contribution to vari-
ance” not only to each predictor variable, but
also to the joint effect of each pair of predictor
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variables. He based his system on the formula

Br=pgpe4 g2+ -+ 82+ 288w
+2.8’18!3Plﬁ + et + zﬁ!ﬁ‘-“]ﬁ’ﬂp{ﬂ—l}ﬂ

Fach of the first # terms in this sum is labeled
the “contribution to variance” of the cor-
responding predictor variable, while each of
the last [#(n — 1)|/2 terms is called the
contribution of the “joint effect” of two vari-
ables. This analysis was accepted by Me-
Nemar (1962, p. 176).

The criticisms of this measure are similar
to those of #jpo;; the measure has none of
the most important properties that a “con-
tribution to variance” has when variables are
uncorrelated. The concept of the “joint con-
tribution to variance” of two predictor vari-
ables might connote to some readers a measure
of the amount that R* would drop if the two
predictor variables were somehow made un-
correlated. This connotation would be in-
correct; in fact, if 8%, B%, and pp are all
positive, so that the “joint contribution to
variance” of X, and X is positive in Engle-
hart’s system, then R* would actually increase
if pjx were zero.

INFERRING RELATIVE REGRESSION WEIGHTS
FROM RELATIVE VALIDITIES

This section briefly mentions a series of
papers which deal with a problem, or set of
problems, which is not clearly defined. Al-
though these papers have not traditionally
been considered to be closely related to re-
gression theory, they are mentioned briefly
hete since a regression solution can be pro-
posed for at least one of the problems with
which they deal. All of these papers deal in
sore fashion with the relationship between
the weight of a variable in 2 weighted average
of several variables, and the “importance” of
the variable to that composite. The weights
of the variables in the composite may have
been chosen by any subjective or objective
method. This freedom in the method of as-
signing weights distinguishes these papers
from those mentioned in the previous section,
which assume that regression weights are
used. For all of the measures of importance
referred to in the present section, increasing
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the weight of a variable increases its im-
portance.

Some of these papers (Creager & Valentine,
1962; Richardson, 1941) simply propose
statistical measures of importance, calling
the propesed measure the teffective weight”
or “contribution to variance” of the variable.
(In every case, the latter term is subject in
large part to the same criticisms made of the
term in the previous section.) Others {Edger-
ton & Kolbe, 1936; Horst, 1936; Wilks,
1938) go one step further, first adopting one
particular measure of importance, and then
showing how the variables should be weighted
so that all of the variables are equally im-
portant, or, more generally, how the variahles
should be weighted so that the measures of
importance of the different variables are
proportional to some specified set of numbers.

These methods, then, are intended to be
used for weighting variables in situations in
which regression equations cannot be derived
because the criterion variable is not easily
observable, even though it exists in some
meaningful sense. Although all of these papers
give careful descriptions of the statistical
properties of the resulting composite, none
gives an example of a practical situation in
which the composite can be shown to have
optimum properties. Most of the papers state
that the procedure for specifying the desired
relative sizes of the measures of importance
would vary across situations. This statement,
though true, has been allowed to obscure
the fact that not one of the papers gives even
the slightest hint, even for one situation, how
one should go ahout specifying these values.
In other words, none of the papers makes a
convincing case for the practical value of the
particular measure of importance proposed.

In approaching the present problem, it
would seem that the first question to be asked
is what a layman or a psychologist is likely
to mean when he tells a psychometrician that
he wants several variables to be weighted
so that they are, for example, “equally im-
portant.” Most commonly (though certainly
not always), he probably means that he esti-
mates the variables to correlate equally with
some specified but unobservable criterion
variable. In this case, use can be made of
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the property of multiple regression equa-
tions—ohvious from an inspection of the nor-
mal equations of regression theory—that the
relative weights of the predictor variables in
a multiple regression equation can be de-
termined from a knowledge of only the relative
(rather than absolute) sizes of the correla-
tions of the predictor variables with a cri-
terion variable. That is, if the validities of
all the predictor variables in a multiple re-
gression equation are multiplied by the same
constant and the beta weights are then re-
computed using the new validities and the
old matrix of predictor intercorrelations, the
relative sizes of the weights will be wum-
changed; each weight will simply be multi-
plied by the same constant by which the
validities were multiplied.

This fact enables the estimation of the
optimum relative weights of several predictor
variables even when the criterion variable is
not directly observable, provided there is
some estimate of the relative validities of
the variables, For example, suppose several
observers are estimated to be equally accurate
raters of seme trait on which subjects are to
be ranked. Suppose the ratings hy these
observers are available, and the problem is
to find the optimum relative weights for a
weighted average of the raters. A problem of
this type was described by Dunnette and
Hoggatt (1957). A solution to this praoblem
could proceed as follows. An arbitrarily
chosen number can be entered info a multiple
regression computer program as the common
validity of the raters, along with the ob-
served standard deviations and intercorrela-
tions of the raters, and along with an
arbitrarily chosen value for the standard
deviation of the criterion wvariable. The
weights computed by the regression program
are then the weights used to form a composite
variable. If the user has entered into the
program accurate estimates of the relative
validities of the different variables, then
this composite is optimum in the obviously
important sense that it correlates higher with
the unobservable “criterion” variable than
any other composite using different relative
weights.

The technique thus makes explicit the

in

measure of importance (i.e., simple validity)
which one should use in specifying the rela-
tive importance of the different variables.
The reader should be cautioned that the
technique does not apply—at least in the
simple form outlined above—to another com-
mon situation in which the validity of each
predictor variable is estimated from the cor-
relation of that variable with other predictor
variables, rather than from external data as
in the above example.

In using the technique, the arbitrarily
chosen validities should not be set so high
that they are incomsistent with the observed
intercorrelations of the variables. For ex-
ample, if two variables correlate zero with
each other, it can be shown that they cannot
both correlate .9 with the same criterion
variable. Setting validities so high that such
an inconsistency appears does not distort the
relative weights computed by the program,
but will usvally produce one of two otherwise
puzzling results (depending on the computer
program used): The program will fail to run,
or it will compute and print a value of R
above unity,

ESTIMATES OF THE VALIDITY OF
REGRESSION EQUATIONS

Estimuating the Validity of the Population
Regression Equation

Let the term “population regression equa-
tion” refer to the equation developed in the
entire population using predictor variables X,
Xy, -+, Xu to predict Xo; the validity of
this equation is measured by the population
multiple correlation R. Likewise, let the term
“sample regression equation” refer to an
equation using the same variables which is
developed in any random sample from that
population; the validity of this equation in
that same sample is measured by the sample
multiple correlation R.

Normally, a sample multiple correlation
is higher than the corresponding population
multiple correlation, In the extreme instance
in which a regression equation using one pre-
dictor variable is developed in a sample of
only two individuals, the sample multiple
correlation is unity in all but trivial cases,



172

no matter what the population correlation is.
In general, the same result occurs whenever
the number of predictor variables » is one
less than the sample size §. If n is greater
than or equal to N, then the solution is in-
determinate; infimitely many sets of weights
will yield sample multiple correlations of
unity.

It is often useful to describe the validity of
a regression equation in terms of its mean
square error; this quantity is the mean of
the squared differences hetween each person’s
true criterion score and the prediction of that
score made by the regression equation.

The expected value of the mean square
error in a sample of size N in which a re-
gression equation is developed is equal to
(N—»n — 1)/N times the mean square error
in the population of the population regression
equation. Therefore, the reciprocal of this
fraction times the sample mean square error
is an unbiased estimator of the population
mean square error. Since the Iatter mean square
error equals the population variance of the
component of X, orthogonal to the predictors,
it is denoted by agp)?, as mentioned earlier,
Similarly, the sample mean square etror is

1
so? = 3 2 (¥ — Lio)?

where &, is the predicted score of person s on
X, as made by the sample regression equa-
tion. Thus, the formula for an unbiased
estimator of ogp,® is

N
el

doe® = 7 s’ [11]
An examination of the derivation of this
estimator (Graybill, 1961, p. 111) shows it to
be unbiased even if none of the usual as-
sumptions of linearity, homoscedasticity, and
normality holds, although without these as-
sumptions little can be said about its
efficiency.

A special case of Formula 11 is the case in
which # = 0. In this case, the prediction of
any individual’s criterion score is the sample
mean, 50 that the sample mean square error
is the sample variance of the criterion vari-
able. By the same reasoning, the population
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mean square error is the population variance
of the criterion variable. Hence, the familiar
formula which states that N/(N — 1) times
the sample variance gives an unbiased esti-
mate of the population variance is simply the
special case of the previous formula in which
n=0.

The population mean square error is related
to the multiple correlation by the formula

E=+1- (Tom /a0’ [12]

which is merely the translation into present
notation of a familiar formula taught in mast
undergraduate statistics courses. Wherry
(1931) suggested that R could be estimated
by substituting into this formula the esti-
mates of agp)? and ao® described in the previ-
ous two paragraphs. He further pointed out
that the ratio between these two estimates is
a function of the sample multiple correlation.
The resulting formula can be found in Mec-
Nemar (1962, p. 184) and elsewhere.
Although the Wherry formula is based on
unbiased estimators of op? and gg%, In itsetf
it is not an unbiased estimator of R in the
strict statistical sense, contrary to McNemar
(1962, p. 184) and others. However, this
is no grounds for criticism of the formula,
since it has long been known that any un-
biased estimator of R has properties which
make it clearly inferior to certain biased esti-
mators, By definition, an estimator is un-
biased enly if the mean of an infinite number
of estimates from independent random samples
equals the parameter estimated, no matter
what the value of that parameter is. When R
is less than 1, no estimate of R based on
finite samples can be perfect, that is, yield
exactly correct estimates of R in every sample.
Therefore, if R =0, an estimator which is
unbiased must be one which can yield nega-
tive estimates in some samples. But this means
that a statistic, in order to be an unbiased
estimator of R, must be able to assume values
which the parameter estimated cannot assume,
since R is greater than or equal to zero, Clearly,
whenever an estimate of R is negative, the
estimate can be improved by estimating Rto be
zero, since zero is always closer to the true R
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than is the negative estimate. But although
this modification of the estimation procedure
is obviously an improvement, it no longer
yields an unbiased estimate of R. Therefore,
unbiased estimators of R are clearly not the
best estimators. For similar reasons, un-
biased estimators of R are of no practical
interest. These points were made by Olkin
and Pratt (1958), who nevertheless developed
an unbiased estimator of RZ

Estimating the Validity of a Semple Regres-
ston Equation

Lord (1950) and Nicholson (1948) have
pointed out that the Wherry formula has
often been misinterpreted as an estimator
of the true validity (ie., the validity in the
population) of a multiple regression equation
developed in a sample. Actually, it overesti-
mates this validity. The Wherry formula
estimates, instead, the validity of the popula-
tion regression equation, which was the equa-
tion developed in the entire population rather
than in a sample. This equation, by defini-
tion, has a higher validity in the population
than any other linear equation using the same
predictor variables. In general, the weights
in a sample regression equation will not be
exactly equal to the weights in the population
equation. The sample regression equation will
then necessarily have a lower validity in the
population than will the population regres-
sion equation. Thus, the Wherry formula
generally overestimates the population validity
of a sample regression equation, because it
actually estimates a parameter {(the validity
of the population regression equation) which
iz higher than this validity.

The same distinction must be made if the
validities of the two types of regression equa-
tion are measured in a second (cross-valida-
tion) random sample from the population. If
any regression equation, based either on the
entire population or on a random sample
from that population, is applied fo & cross-
. validation sample, then the expected mean
| square error of that equation in the cross-
' yalidation sample equals the mean square
. error of that equation in the population.
" Since the regression equation developed in
sample does not predict as well in the popula-
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tion as does the population regression equa-
tion, it would therefore also not be expected
to predict as well in a random crogs-validation
sample from the population.

Hence, three different mean square errors
must be distinguished. The smallest, and
normally the easiest to observe, is the sample
mean square error of the equation developed
in that same sample. The second and pext
smallest is the population mean square
error of the equation developed in the
entire population; this equals the expected
mean square error of that equation in
any random sample, The third and largest is
the mean square error of a sample regression
equation in the population, which equals the
expected mean square erroy of such an equa-
tion in a cross-validation sample, The Wherry
formula is based on a formula which estimates
the second of these three mean square errors
from the first, while a prediction of cross-
validity requires predicting the third from
the first. Tn his original article, Wherry failed
to distinguish between the second and third
of these mean square errors, and the result-
ing confusion still appears in even the most
recent standard sources, such as Guilford
(1965, p. 401) and Guion (1965, pp. 163~
164). Since the Wherry formula was thus
often misused to attempt to predict the cross-
validity of a sample regression equation, it
was often observed to overestimate this quan-
tity (i.e., to underestimate the mean square
error).

Lord and Nicholson, working independently,
found that an unbiased estimator of the popu-
lation mean square error of a regression equa-
tion developed in a sample of size ¥ is

N+n+t+1

L ol R 2
— s
N ] 02

[13]

In their derivations, Lord and Nicholson as-
sumed that the conditional distributions of X,
are normal, have a common variance, and are
linearly related to the predictor variables.
They further assumed that the scores ob-
served on the predictor variables are fixed by
the investigator, rather than sampled ran-
domly from a population (the usual case in
psychology). If we replace the assumption of
fixed scores by the assumption of random
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sampling, and replace the other assumptions
by the assumption that scores on all variables
form a multivariate normal distribution, then
the estimator comparable to Formula 13 is

N-—-2 N+1
W—ti— 2 X =ng—1 [14]

This estimator gives still larger estimates of
the mean square error than does Formula 13,
except in the trivial case in which » =0, in
which instance the two estimates are identi-
cal. Formula 14 is an algebraic rearrangement
of a formula given by Stein (1960, p. 427).
An independent derivation by the present
author, which is longer but which requires
less mathematical competence to follow, is
given under Theorem 18 of the document
cited in Footnote 2.

Unfortunately, there is as yet no practical
means of establishing a confidence interval
around estimates computed from either For-
mula 13 or 14; empirical work suggests that
their standard errors might be quite large.

An extremely important property of For-
mulas 13 and 14 is that the estimated true
validity of a sample multiple regression equa-
tion is very low (and the mean square error
very high) when the number of predictor
variables is large in relation to the number
of people in the sample on which the equa-
tion was derived. This is often observed in
practice. For example, Guttman (1941, p.
360} constructed a regression equation with
84 predictor variables using 136 subjects, and
observed a correlation with the criterion vari-
able of .73 in the initial sample and .04 in
a cross-validation sample. Thus, it is often
. better to use fewer predictor variables, or fo
use a different prediction method altogether,
than to use a regression equation with an ex-
tremely large number of variables. For ex-
ample, using the same data, Guttman ob-
served a cross-validity of .20 using a regres-
sion equation with 21 variables, and a cross-
validity of .31 for a simple item-analytic
technique.

So@t

Relation between the Mean Square Ervor and
the Correlation Coefficient

The points to be made in this section are
relevant to measures other than multiple re-
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gression equations, even though they will
be phrased in regression terms.

Formula 12 shows the well-known means
of translating the mean square error of a
population regression equation into the coef-
ficient of correlation between the regression
equation and the criterion variable. However,
when the mean square error of a sample re-
gression equation is computed in a cross-
validation sample or in the population as a
whole, neither Formula 12 nor any other
formula provides an exact translation of that
mean square ertor into a coefficient of cor-
relation between the regression equation and
the criterion variable. This is because two
regression equations can have different mean
square errors yet correlate equally with the
criterion variable. Suppose that two sample
regression equations are based on the same
predictor variables, and that the weights
within the first equation have exactly the
same relative sizes as the weights within the
second, Then the two equations will correlate
equally with the criterion variable. But if the
actual sizes of the weights, or the size of the
additive constant g, differ hetween the two
equations, then the two equations will have
different mean square errors in the popula-
tion or in a cross-validation sample.

Just as two regression equations with dif-
ferent mean square errors may correlate
equally with the criterion variable, parallel
reasoning shows that two equations with the
same mean square error may have different
correlations with the criterion variable. Thus
g cross-validity mean sguare error computed
in a second sample, or estimated by Formula
13 or 14, cannot be translated exactly into a
correlation coefficient by formulas analogous
to Formula 12. If ¥ is large, however, the
familiar formula for translating a mean square
error into a correlation coefficient should give
a good approximation.

When a regression equation or other meas-
ure is used to select the m individuals esti-
mated to be highest on the criterion variable
and s is fixed by the situation, then the value
of the measure depends only upon the rela-
tive, not absolute, scores of the individuals on
that measure. Since the correlation coefficient
likewise depends only on relative scores, it
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follows that, in this situation, the correlation
between the measure and the criterion vari-
able gives a more realistic statement of the
value of the measure than does the mean
square error. On the other hand, when m is
not predetermined, whether a person is se-
lected depends upon his absolute score on
the measure rather than upon the relation-
ship of that score to the scores of other in-
dividuals. In this situation, the value of a
measure is a function of the actual difference
between a person’s estimated and true cri-
terion scores; therefore, the mean square
error is a more appropriate index of the value
of the measure than is the correlation coef-
ficient. For this reason, Formulas 13 and 14
are most useful in situations in which the
number of people to be selected by a measure
is flexible rather than predetermined. (None
of this is meant to imply, however, that either
the multiple correlation coefficient or the
mean square error is proportional to the
value of a test battery, as value is measured
in decision theory terms.}

STATISTICAL CRITERIA FOR SELECTING
PrREDICTOR VARIABLES

Formulas 13 and 14 show the desirability
of selecting a small number of predictor vari-
ables for use in a regression equation when
v, the total number of available variables, is
large. This section discusses several methods
which have been proposed for doing this. All
methods discussed below involve complex
computational manipulations, such as invert-
ing the v X v correlation matrix of predictor
variables. Although modern computers use
approximate methods to perform these cal-
culations, the calculations are so complex that
either the computational time or the rounding
ettors increase rapidly as v increases. As a
very rough rule, when v is larger than ap-
proximately 50-100, item-apalytic methods
discussed by Darlington and Bishop {1966)
are preferable to any of the methods dis-
cussed below, both because they are simpler
computationally and because tests constructed
by those methods have been demonstrated to
perform better on cross-validation when the
number of people in the test-construction
sample is small, Roughly speaking, the meth-
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ods discussed below are of most interest when
10 < v < 50, but may be of value when
5 < v < 100

If an investigator wishes to predict a crite-
rion variable by a regression or least squares
technique, and he bas available v possible
predictor variables, he can use in the equation
all v variables {so that n, the number of pre-
dictor variables used in the regression equa-
tion, is equal to v). Or, he can discard all »
predictor variables (so that # = 0) and use
the sample mean of the criterion variable as
the prediction of each person’s criterion score.
Or, he can use a regression equation with Jess
than v predictors (so that ¢ > n > 0). Since
he can choose independently whether to in-
clude or exclude each of the v variables, he is
faced with 2° possible alternative sets of pre-
dictor variables, plus sets formed by lumping
together several variables and then entering
them in a regression equation as ene variable.

In general, it is impractical to compute
all of the 2° or more possible regression equa-
tions and then estimate the validity of each
equation, so it is necessary to follow some
simpler procedure in choosing a final regres-
sion equation. The remainder of this section
discusses several such procedures.

Selecting Variables to Minimize Sampling
Errors of Beta Weights

If the regression of X, on the predictor
varighles is linear and if the conditional dis-
tributions of X, have a common standard
deviation, then the sampling distribution of
each sample beta weight 5; has mean B,
(hence b; is an unbiased estimator of 3;) and
a conditional standard deviation

(15T

1 Although this expression as a whole is a popula-
tion value, it contains the sample value 530 This
usage will be new to many psychelogists, although
it is standard practice in some branches of statistical
theory. Briefly, the expression as a whole is the
standard deviation of the sampling distribution of
by in those samples whick have o given value of
$3¢p, Tather than in all samples. This peint is fur-
ther clarified in the discussion at the beginning of
Part II of the document cited in Footnote 2. Some
of the points made briefly in the remainder of the
present paragraph are also expanded there.

-
gomy/ YV 500
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An estimate of Expression 15, using the esti-
mate of ogp® given by Formula 11, is com-
puted by most standard multiple regression
computer programs. If we can also assume
normality of the conditional distributions of
Xy {or if ¥ is large enough so that the central
limit theorem applies), then dividing &; — 3,
by this estimate of Expression 15 yields a
statistic with a ¢ distribution with N — % — 1
df. When B, is set equal to zero, this test is
equivalent to the F test mentioned earlier,
Although many texts fail to mention it, Bart-
lett (1933, esp. pp. 277-278) has shown that
use of both Expression 15 and the ¢ test is
appropriate when the sample values on the
predictor variables are determined by the
random sampling procedure common in psy-
chology, as well as in the case (more com-
monly discussed by statisticians) in which
those values are fixed by the investigator.
Because the quantities N and oqp in Ex-
pression 15 are the same for all the variables
in any one regression equation, the standard
errors of the several bz in the equation are
inversely proportional to the values of s,
which are the observed standard deviations
of the orthogonal components of the various
predictor variables. The quantity s;,, Is
generally large if X; has low correlations with
the other predictor variables and small if
X; is highly correlated with the other pre-
dictors; therefore, the weights of the variables
which have the lowest correlations with other
-predictor variables are generally the weights
which are least subject to sampling errors.
Cureton (1951a, pp. 12-15; 1951b, p. 691)
referred to the number of variables which
must be removed from a set of predictor
variables in order to leave the remaining
variables reasonably uncorrelated with each
other as the number of “approximate linear
restraints” in the set. He recommended that
variables bhe removed or combined so as to
eliminate the approximate linear restraints,
in order to maximize $;,, for each j and
thus minimize the sampling errors of beta
weights in the regression equation. His
recommendation was apparently accepted by
Guilford (1954, p. 404). It will be shown,
however, that Formulas 13 and 14 raise con-
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siderable doubt as to the value of this
strategy.

Consider a situation with three predictor
variables, X1, X1, and X;. Suppose the initial-
sample validity of the regression equation
using X; and X equals the initial-sample
validity of the equation using X, and X,
but suppose that ryo? is lower than 2% In
this situation, an investigator following Cure-
ton’s recommendation would prefer using the
former of the two equations, since the esti-
mated standard errors of the beta weights are
lower in that equation, even though the
initial-sample validities of the two equations
are the same.

On the other hand, when Formula 13 or 14
is used to estimate the true wvalidity of a
regression equation, intercorrelations of the
predictor variables are ignored except insofar
as they affect the initial-sample wvalidity.
Hence, in the above example, the predicted
cross-validities of the two regression equa-
tions would be the same, despite the differ-
ences in the estimated sampling errors of
the beta weights caused by the difference
between rip® and rpy®.

We thus have the paradoxical situation
that the sizes of the errors in estimates of
beta weights do not enter into the estimation
of the true validity of a regression equation.

The solution te this paradox lies in the
nature of the correlation between the two
sample beta weights within the same equa-
tion (i.e., the correlation we would ohserve
if we drew infinitely many equal-sized in-
dependent random samples from the popula-
tion, computed two regression weights 5
and b, in each sample, and then correlated
&; with &, across the samples). In a regres-
sion equation with = variables, the correla-
tion between any two weights &; and &,
equals —1 times the partial correlation be-
tween X; and X;, partialing out the other
n — 2 predictor variables.® This correlation is

8This statement assumes linesrity and homeo-
scedasticity but not normality. The statement is
exactly correct only if wvalues on the predictor
varigbles are fixed by the experimenter; if instead
they are sampled randomly ({the most common
case in psycholegy), then we use, instead of all
samples, the subset of samples with given values of
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defined as the correlation between the com-
ponents of X; and X, orthogonal to the other
# — 2 predictor variables. In the present ex-
ample, in which 2 = 2, there are no other pre-
dictor variables; hence, the correlation be-
tween &; and by is —ry2. Thus in this example,
if 7,2 is positive, the correlation between the
two sample beta weights is negative, Since
sample beta weights are unbiased estimates of
the corresponding population weights, this
means that if #, is positive, an overestimation
of one beta weight will tend to be found in
the same sample with an underestimation of
the other beta weight. Further, the higher the
value of #1o, the more probable it is that this
relationship exists.

This fact becomes important when con-
sidered in conjunction with the effect of differ-
ent combinations of errors in the two beta
weights on the validity of the regression
equation. When two predictor variables are
positively correlated, then, if an error is
made in estimating one beta weight, the
adverse effect of this error on validity can be
lessened by an error in the opposite direction
in estimating the other beta weight. The
higher the correlation between the two vari-
ables, the greater is the ability of errors in
opposite directions to compensate for each
other in the prediction of criterion scores,
since the predictors are increasingly *‘sub-
stitutable” for each other® In the exireme
case in which two variables of equal variance
correlate perfectly, any two pairs of beta
weights with the same sum are completely
equivalent to each other. For example, in
this extreme instance, weights of .8 and —.2,
of 3 and .3, and of —.1 and .7 are all
equivalent since each pair sums to .6.°

Hence, when rys is positive, the sampling
errors of the two beta weights are larger
than if r;2 = 0, but the errors tend to be in

the predictor variables. See Theorem 16 of the
document cited in Footnote 2,

? The last two statements follow directly from a
formula proven by Guttman (1941, p. 305). It is
given without proof as Theorem 17 of the document
cited in Footnote 2.

10 The truth of this statement is unaffected by
the fact that standard methods of deriving multiple
regression weights break down when two predictor
variables are perfectly coirelated,
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opposite directions and such errors tend to
compensate for each other in a manner Jack-
ing when e = 0.

Errors in beta weights also tend to com-
pensate for each other when rqys is negative.
Again, in the extreme case in which r;2 = —1,
the compensation is perfect. Thus, it is pre-
cisely in those situations in which errors in
the estimates of beta weights tend to be
largest that the adverse effect of these errors
on validity is minimized by the pattern in
which the errors tend to occur. This is true
for regression techniques with any number of
variables.!* Therefore an investigator seeking
to choose which of several regression equa-
tions has the highest true validity need not
concern himself directly with sampling errors
of beta weights. He should simply choose
the equation for which Formula 13 or 14
predicts the lowest cross-validation mean
square error, based on the number of in-
dividuals in the initial sample, the number
of predictor variables in an equation, and the
initial-sample validity (expressed in terms of
the initial-sample mean square error).

The laws described above also explain the
paradoxical but common finding that when
predictor variables are highly correlated, re-
gression equations developed in two different
random samples from the same population
often have widely different weights, yet both
equations predict about equally well in both
samples. In a typical example of this effect =~
in operation, a psychologist using the Grad-
uate Record Exam Verbal Aptitude Test and
the Miller Analogies Test to predict a cri-
terion of success in graduate school found
that the regression equation developed in one
half of his sample gave a high positive weight
to the GRE and a near-zero weight to the
MAT, while the equation developed in the
other half of his sample did exactly the op-
posite, giving the MAT a high positive
weight and the GRE a near-zero weight. Yet
each equation worked almost as well in the

1t These few paragraphs are an attempt to recon-
cile Formulas 13 and 14 with facts which at first
spem to contradict them, using the simplest case
of two predictor variables. A more rigorous de-
velopment of the reasoning presented would simply
amount to proofs of those formulas,
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other half of the sample as in the half in
which it was originally derived.

Removing Variables with Smaoll Beta Weights

It was shown above that the predictor
variables with the smallest 8’ weights in a
population regression equation are not neces-
sarily those whose removal would cause the
smallest drop in the population validity of
that equation. The same relationship clearly
holds between initial-sample beta weights and
initial-sample validity.

Formulas 13 and 14 show that when
two regression equations have the same
number of predictor variables, the one which
has the higher initial-sample validity has the
higher estimated true validity. Since remov-
ing variables with the smallest beta weights
is not the most efficient way to achieve the
highest possible initial-sample validity after
the removal of a given number of predictor
variables, it follows that this is also not
the best way to maximize true validity.

Stepwise Regression

The foregoing discussion has made it clear
that the only statistics relevant to selecting
predictor variables from a larger number of
variables are the initial-sample validity, N,
and # for each of the possible regression
equations formed from different combinations
of the variables. The technique of stepwise
regression, for which computer programs are
widely availahle, has the desirable property
that it uses only these statistice.

This technique selects variables for a re-
gression equation one at a time. Selecting
first the most valid predictor variable, it then
selects that variable which when combined
with the first is the most useful—that is, the
one which adds the most to the multiple cor-
relation and which thus vields the best two-
predictor equation among those equations
which contain the first variable selected. The
extent to which the multiple correlation
would be increased by a variable iz deter-
mined by computing the validity of the
orthogonal component ot some mathematically
equivalent statistic for the predictor variable
being considered. The technique then selects
by the same critcrion the variable which com-

RICHARD B. DARLINGTON

bines with the first two variables to produce
the best three-predictor equation. Subsequent
vatiables are selected in a similar manner.
Variables can also be removed if they are
found to be no longer useful.

The process can be stopped when the
initial-cample validity of the equation ap-
proaches that computed using all available
variables, or when adding the most useful
remaining variable produces no statistically
significant increase in the multiple correla-
tion by the significance test mentioned earlier.
Significance tests are not normally appropriate
for this purpose, however, since addition of
a variable to a regression equation does not
normally require a definite rejection of the
hypothesis that fewer variables would suffice.
Perhaps the best strategy is to use Formula
13 or 14 to evaluate each of the regression
equations calculated by a stepwise regression
computer program, and then to select the
one equalion which appears best by this
criterion, Of course, Formula 13 or 14 will
then underestimate the mean square error
of the equation so selected for the same reason
that the correlation between a test and a
criterion variable can be expected to shrink
if the test was selected from a large number
of tests on the basis of this correlation.

Factor Analysis of Predictor Variables

Another technique for reducing the number
of predictor variables is to factor analyze the
set of all available predictors and then use
some of the resulting factors in a regression
equation in place of the original variables.
This section discusses the conditions under
which this procedure or variations of it are
likely to improve the prediction of the cri-
terion variable,

If the numbet of factors extracted equals
the original number of predictor variables,
then it can be shown that the multiple regres-
sion equation constructed to predict the cri-
terion variable from the factors is equivalent
to the comparahle equation constructed from
the original variables. The two equations will
make identical predictions for any individual
since the weight given to each original vari-
able in the equation based on factors exactly
equals the weight given that same variable
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in the regression eguation based on the orig-
inal variables.?® Therefore, any improvement
resulting from the use of factors as predictors
can occur only when the number of factors
used is smaller than the number of original
predictor variables.

Because of this, often only the few factors
which account for the most variance are used
(cf. Horst, 1941, pp. 437-444). However,
from a purely mathematical standpoint, it
could conceivably happen that the factor
which accounts for the least variance in the
predictor variables could correlate perfectly
with the criterion variable, and 2l other fac-
tors could correlate zero with the criterion,
Therefore, if factor analysis is a possibility,
it is important to consider, from the nature of
the variables being factored, whether thiz or
a similar result is likely to occur.

When the variables being factored contain
substantial error variance, it is well known
that this error tends to be concentrated in
the factors which account for the least vari-
ance, with a resultant increase in the reli-
ability and therefore the validity of the other
factors. In such a situation, the strategy of
using in a regression equation only the several
factors which account for the most variance
would have much to recommend it.

The situation is different when highly reli-
able variables, such as age, sex, or census
data, are used. In such situations, it could
happen that factors which account for very
little variance in the predictor variables are
highly useful in predicting the criterion. For
example, if two of the original variables are
highly correlated, such as subject’s age and
age of the subject’s next younger sibling
(assuming he has one), a factor consisting
of the difference between these two scores
would “account for” very little variance in
the original two variables. Yet this difference
might well have had an important effect on
the subject’s childhood and therefore might
correlate more highly with an external eri-
terion than, say, a factor consisting of the
sum of the two ages, which accounts for far
more variance in the original predictor vari-
ables. In such situations, two alternative

12 See the discussion under Theorem 11 of the
document cited in Footnoote 2,
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strategies are especially worthy of considera-
tion: stepwise regression (discussed above},
and stepwise regression using all of the fac-
tors rather than the original variables. When
factors are uncorrelated, it follows from
Formula 3 that the latter procedure simply
involves selecting the factors most highly
correlated with the criterion variable. Both
these strategies have the desirable property
that only the usefulness of each predictor
variable is considered in the selection of
variables, and this property is not shared
by any strategy which considers only the
factors which account for the most variance
in the original set of predictor variables. An
empirical comparizson of the two stepwise
methods has been made by Burket (1964).

SUMMARY
Basic Formulas

The beta weight and usefulness of a pre-
dictor variable in a multiple regression equa-
tion are expressed simply in terms of the
properties of the component of the variable
orthogonal to the other predictor variables.

Suppressor Variables

A variable receives a negative weight in a
regression eguation if the ratio hetween its
correlation with the error in the rest of the
equation, and its correlation with the criterion
variable, exceeds a certain amount.

The relations possible among sets of wvari-
ables are so complex that when a variable
with a positive correlation with the criterion
variable receives a negative weight in a re-
gression equation, it is generally very difficult
or impossible to determine, from the content
of the variables, whether the negative weight
is “unreasonable.”

Measures of the “Importance” of a Pre-
dicter Variable

When the predictor variables in a multiple
regression equation are intercorrelated, the
“contribution to variance” of a predictor
variable cannot be interpreted in the same
way that it can be interpreted when predictor
variables are uncorrelated. Tn the latter case,
the phrase has essentially the same meaning
it has in analysis-of-variance designs.



180

1f the usefulness of a predictor variable
is defined as the amount that the squared
multiple correlation would drop if the variable
were removed, then rank ordering the pre-
dictor variables in a regression equation gives
different orders depending on whether the
ranking is by validity, by usefulness, or by
the absolute value of the beta weight. This is
true even if all variables have the same stand-
ard deviation.

From the sizes of the weights in a multiple
regression equation predicting a specified de-
pendent variable from several independent
variables, it is sometimes possible to measure
the size of the “effect” which each of the
independent variables has on the dependent
variable.

Two measures of “importance,” which sum
to R* when summed across all variables in
a regression equation, have litfle practical
value.

Inferring Relative Regression Weights from
Relative Validities

The relative sizes of the weights in a re-
gression equation can be computed from the
relative validities (correlations with the cri-
terion variable) of the predictor variables,
even if the actual validities are unknown.
This provides an exact solution to a common
practical problem,

Estimates of the Validity of Regression Equa-
tions

The Whetry formula estimates the validity
of the multiple regression equation developed
in a population from the validity of an equa-
tion developed in a sample.

Statistics which give strictly unbiased esti-
mates of a population multiple correlation
coefficient are of no practical interest.

The Wherry formula has been used widely
but incorrectly to estimate the cross-validity
of a regression equation developed in a
sample. Two alternative formulas are the
correct formulas for this situation.

These alternative formulas produce ex-
tremely low estimates of cross-validity when
the number of predictor variables is large in
relation to the number of cases used in
developing the regression equation. This
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agrees with the results of empirical cross-
validation studies. Therefare, cross-validity is
sometimes enhanced by using fewer predictor
variables or by using a different prediction
method altogether.

Estimates of the true validity of a sample
regression equation can be expressed either
as correlation coefficients or as mean square
errors. Unfortunately, estimates in one form
cannot always be readily converted to the
other form, despite the well-known formula
relating the two in other situations. The cor-
relation coefficient is more useful in “fixed
quota” situations, and the mean square error
is more useful in “flexible quota” situations.

Statistical Criterig for Selecting Predictor
Variables

The method of “approximate linear re-
straints” is not the most effective method of
selecting predictor variables, because of the
highly paradoxical relationship between the
validity of a regression equation and the
sampling errors of beta weights in the equa-
tion.

The same analysis explains the fact that
regression equations developed in two differ-
ent random samples from the same popula-
tion often have surprisingly different beta
weights, yet in any one sample the two equa-
tions make very similar predictions and thus
have very similar validities.

The method of removing from a regres-
sion equation variables with Tow beta weights
is not the most effective method, because
such variables are not necessarily those whose
removal produces the smallest drop in the
multiple correlation.

Stepwise regression and extensions thereof
are defended.

Under certain conditions, factor analysis
can be used to develop a few factors which
contain most of the valid variance in a set
of predictor variables; under other conditions
this procedure is not recommended.
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