THE PSYCHOLOGICAL BULLETIN
Vol. 50, No. 6, 1953

ASSESSING SIMILARITY
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AND

A preat many current.il_lvestiga—
tions, particularly in clmlca'l ‘and
social psychology, deal with similar-
ity between profiles of test scores.
Such studies vary widely with regqrd
to the problems posed and the §pec1ﬁc
variables used, but they have in com-
mon an attempt to deal with several
scores or traits simultaneously. Sane
investigators attempt to 1df:nt‘1fy
“types’ of people who have similar
configurations of scores. Mu_ch of
so-called inverse factor analysis has
this aim. Other studies attempt to
differentiate clinical or occupational
groups by means ol patterns of test
scores (e.g., 1, 28). In another type
of problem, two or more profiles for
the same person are compared. The
person is assessed more than once on
the same set of variables, and the
consistency of the profiles is meas-
ured. This is one method nsed to
study the validity of clinical proce-
dures (5, 24). Profile compariso:_l also
permits exploration of new varlaT?les
such as self-consistency over time
(31) and assumed similarity in per-
ception of others (17). ‘

At present many techniques are
available to the investigator who is
concerned with assessing the degree
of profile similarity. The method
most widely known among psychol-
ogists is that of correlating one profile
with another, generally termed a Q
correlation. Burt (3} and Stephen:son
(32) have been chiefly responsnl?le
for developing thisapproach.2 Special
indices have also been proposegi, such
as the coeflicients of pattern simmlar-
ity of Cattell and those of du Mas.
A distance measure has been de:
scribed recently by Osgood and Suci
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(26) and by the present writers (11.)_1
A very valuable summary of statis-
tical literature bearing on the use of
profiles or patterns to classify indi.
viduals into relatively homogenegys
groups has been preparedl by Hodg$
(22). Other recent reviews which
deal in part with this problem are
Gaier and lee's (20) and Tyler's
(35). ,
The various available methods of
measuring profile similarity yield
somewhat different results. Proper
choice of a measure for a specific
investigation requires knowledge of
the assumptions, limitations, and
information ntilized in the several
methods of measuring profile simi-
larity. It appears lhal the methods
most often used have serious limzlo-
tions. Much superior methods can be
proposed. )
We intend in this paper to examine
in a general way the problem of com-
paring sets of scores and to clarify
the mathematical logic involved

1 The study was supported under Contract
Ne6ori-07135 between the Office of Nfurdl R:'
search and the University of Illinois, The
first version of this paper was preser!tefi to the
Midwestern Psychological Association _OT;
April 27, 1952, and a more detailed ‘t&l;gl?n
report on the material (11) was 1ssu
April, 1932, }
‘\P’ Stephenson's current work on { ‘fs;-:l
nique (33) departs from the r:orrela'f:wuss
methods reviewed here. We shall not di
here the logic of his basically new approd

ing analysis of variance.
ustn%he w};rk of Osgood and Suci (26), 3;:
our own work, was in large measure 1 A
peadent. While working on our separd i
problems, however, we exchanged ideas 0%

sionally, and found our interests cosheir o
on the I} measure. We a.p]:)reu:la'ceha‘“'e el

operation and that of others who
cussed our problem with us.
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therein. This permits us to consider
the various formulas which have been
advanced in the past, and to draw
attention to those approaches which
seem to have greatest merit.

This paper is primarily concerned
with descriptive indices applicable
to the investigation of qnestions
such as the following:

1. How similar are Persons 1 and 27

2. How siniilar is Person 1 to Group ¥?

3. How homogeneous are the members of

Group ¥?
4. How similar is Group ¥ to Group 27
$. How much more homogeneous is Group
Y than Group 27 Than the combined
sample?
Comparable questions may be asked
in studies concerned with two or
more profiles for the same person.

While it is necessary to describe
the degree of similarity between score
scts in many of the investigations
now being pursued, it is often equally
or more important to test hypotheses
such as “Group ¥ and Group Z
can be regarded as samples from the
same population” or “Individual 1 is
more likely to be a member of Group
¥ than of Group Z.” Such problems
of inferenttal statistics relevant to
multivariate analysis have been thor-
oughly studied by Fisher, Hotelling,
and the Calcutta school, and several
significance tests are available for
formally distributed variables (29).
We shall not discuss the inferentjal
Problems, being concerned solely with
lescriptive formulas for reporting

] degree of similarity.

GENERAL METHODOLOGICAL
DrrricuLTiES

While the procedures permitted to
& investigator of profile similarity
e varied, they involve numerous
Mtfalls, We shall discuss some of
these difficulties as a preliminary to

‘rmal analysis of profile comparison
Methods,
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Similarity as a general quality.

Thinking of persons as “similar’’ or
“disstmilar’’ is a common oversimpli-
fication. This attractive notion,
however, does violence to a funda-
mental principle. If behavior is de-
scribed in terms of independent di-
mensions, then persons who are similar
in one dimension may be no more
similar in some second dimension
than persons who are dissimilar in the
first dimension. In other words, simi-
larity 15 not a gemeral qualily, It is
possible lo discuss similarily only with
respect lo specified dimensions (or
complex characteristics). This means
that the investigator who finds that
people are similar in some set of scores
cannot assume that they are similar
in general. He could begin to discuss
general similarity only if his original
measurement covered all or a large
proportion of the significant dimen-
sions of personality. Thus any prob-
lem inquiring whether similar people
perform differently from dissimilar
people must be stated in terms of the
question “Similar in what?' It is
most unlikely that similarity in every
quality has the same effect.

Reduction of the configuration by
stmilarily indices, Many investiga-
tors are attracted to profile similarity
studies because they believe that in
this way they can take into account
the entire configuration of scores.
However, when we try to treat a set
of scores by any of the mathematical
methods now being used, we no long-
er study the entire configuration.
Instead, by reducing the configura-
tion or the relationship between two
configurations to a single index, we
discard much of the information in
the score set,

We may illustrate this by referring
to Gage’s study of insight (19). He
asked a teacher to predict the re-
sponses of a pupil. He scored the

2
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predictions using the responses ac-
tually given by the pupil as a key,
thus estimating the accuracy of the
teacher's perception. It is obvious,
however, that a more refined ques-
tion could be asked regarding the
teacher's ability to perceive separate
aspects of the pupil. In using a total
index, Gage was forced to combine
these many separate aspects of in-
sight into an over-all score. It is im-
portant that the investigator recog-
nize the limitations of so-called global
approaches even though they may be
the best for him to use in initial ex-
ploration of a particular area.
Absolute interpretation of index.
Another type of difficulty which fre-
quently complicates interpretation of
profile similarity studies is the failure
to recogpize that the magnitude of
the similarity index has no meaning
in itseli. In conventional psycho-
metrics, we would not give serious
attention to the absolute value of a
test score. When we cofnlipare a per-
son to a key, the number of items on
which he and the key agree is a form
of correlation. We are aware that
we should not interpret this raw score
which reflects the difficulty of the
items. Instead, we give our attention
ta the relative standing of the indi-
vidual in some reference group. Cor-
relations between persons, and other
similarity indices, entail precisely
the same problem. Toe often, ac-
customed to interpreting correlations
as absolute numbers, investigators
interpret similarity indices without
recognizing that they also depend
upon the difficulty or popularity of
the items or tests.

One often cited study by Fosberg
shows the fallacy of this type ol inter-
pretation (18). Fosberg hoped to
demonstrate that the Rorschach test
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it attempting to make the best pos.
sible impression. He correlated the
two psychograms for a given indi-
vidual and interpreted the resulting
high correlations as showing that the
Rorschach was proof against faking,
Now it is true that the psychogram
under ‘‘fake good" conditions could
be predicted from that under normal
conditions. But the ‘fake good"
psychogram could have been pre.
dicted quite well from the psycho-
gram of some other person chosen at
random. Between any two Rorschach
records taken at random, there will
tend to be a high correlation just be-
cause certain scores (e.g., D, F) will
usually be large, and other scores
(e.g., m, cF) will usually be small. -
It is evident that any estimate of
the similarity of particular profiles
must be evaluated relative to the
similarity of people in general on the
measures in question. A high index
of similarity between two persons
might indicate that they are unusual-
ly alike, or might indicate that they
possess in common only the char
acteristics most humans have. Féf
example, Gage (19) considered id«
sight to be indicated by a marked
similarity between prediction am
actual response. He found thati#

large part of the correfation betwegh -

predicted response and actual #
sponse was accounted for by &
teacher's ability to predict the f#
sponses of pupils in general.
the teacher was asked to predict ¥
average response of pupils, the o
celation with the actual responses @

as high as when the teacher &
tempted to predict that particu)
pupil’s response. 3

Noncomparabilily of scale un'%
Combining many traits into any %

TN )
e:{ard the x4 as the coordinates of a
- Point Py in k-dimensional space. The
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in the &-dimensional space, and, con-
versely, the further apart the points
the more dissimilar are the corre-
sponding measurements, Accordingly
we define the dissimilarity of two
individuals as the linear distance
between their respective points.

If we represent the variables by
orthogonal axes, the distance D be-
tween any two points may be easily
obtained by use of the generalized
Pythagorean rule,

other methods presently used, in-
volves assumptions regarding the
scale of measurement which usually
cannot be defended (7, 8). If, for
example, one score measures intelli-
gence and a second one reflects anxie-
ty. level, any single index based on
this profile involves an assumption
that orte unit of intelligence is equiva-
lent to some number of units on the
anxlety scale. Such an assumption is
perhaps necessary if it permits investi-
gations which would otherwise be
impossible. It may also be possible
to ]ustffy the units assigried to the
respective scales by a mathematical
treatment which selects the weights
to maximize some prediction. This
is an empirical solution, however, and
does not contribute directly to de-
velopment of theory.

&
Dy = Z (x,-l — xﬂ)z.

=1

(1]

D* can be used directly as a measure
.of §1milarity. In most cases, however
1t is preferable to obtain D, since thc-,:
larger differences between persons
are much exaggerated in squaring.
D is less skewed than D? but is not
normally distributed,

Formula [1} is a general expression
for the dissimilarity between twa
p_roﬁ]es. It may be applied to prac-
tically any type of score set; viz., re-
spofises to a series of items, raw scores
on a set of tests, profiles of deviation
scores, ratings of a group of stimuli
on a subjective scale, or responses
in a Stephenson forced-sort pro-
cedure. While formula {1} results in
a measure of dissimilarity no matter

A GENERALIZED CONCEPT OF
PATTERN SIMILARITY

We now introduce a model for the
concept of similarity between persons
“ih](:h provides a basis for systematic
d1§cussi0n of the assumptions under-
lying most of the common measures
of profile similarity.

A profile or pattern pertaining to a
person consists of a set of scores.
We shall use the following notation:

j=any of the variates @, &

B * which are & in nurnber; ?"hat types of scores are used, the
i=any one of the persons 1 interpretation of the results depends

2, ... N ' on the nature of the scores.
x;;=the score of person ¢ on vari- . One. basnc‘ decision made by the
ate 7. investigator is whether to work with

the original score set ar to convert it
by centering about the person’s mean
or by standardizing within the per-
son. He may make these conversions
before using formula [1]. Many of
T:he current formulas automatically
introduce some such treatment of
scores. Converted scores in general

Considering only two persons, we
flave the set of 0 (®a, Yo, v - - Xn)
for person 1, and the set of x; for
Person 2. Without placing any re-
ftriction upon our data, we may

o The more
Vl‘rmlar the measures of two indi-
'duals the closer will their points lie

of composite index, whether it béi’ ‘n define a point Py

D measure, a Q correfation, a
criminant function, or any of

altgr t_he domain within which simi-
larity is measured and consequently
alter the results,

is proof against faking. He therefore
asked individuals to take the test in
the normal manner, and then to take
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Elevotion and scalter within profiles.
A set of % scores, whether expressed in
raw or standard measure, has & de-
grees of freedom and may be con-
sidered as a configuration in % space.
When the profile is expressed as a set
of deviations about the person’s
mean or when the profile is standard-
jzed within the person, the number
of degrees of freedom is reduced.
This has important consequences.
In order to discuss them we introduce
the terms elevation, scatter, and shape.
Elevalion is the mean of all scores for
a given person. Scafter is the square
root of the sum of squares of the indi-
vidual's deviation scores about his
own mean; that is, it is the standard
deviation within the profile, multi-
plied by +k. Shape is the residual
information in the score set after
equating profiles for both elevation
and scatter. We can clarify these
terms by introducing numerical il-
lustrations. Suppose that we have
five traits ¢, b, ¢, d, e, and persons
A, B,and C.

b ¢ d €

a
4 1 =1 0
B 0 -4 =2 1 0
¢ 3 -1 3 -1 -4

According to formula [1f, Dasg® is
0. Dac*=Dpt =063

Elevation is determined by averag-
ing the scores for each individual.
For the example above, the elevations
are as follows: 4, 1; B, —1; C, 0.
Removing elevation, the individual
profiles become:

b ¢ d €

i
4 1 -3 -1 2 1
B 1 -3 -1 z 1
¢ 3 -1 3 -1 -4

Now the distance between A and B
is 0. Those persons who are different
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when their total profiles are taken in.
to account are indistinguishable on
the basis of their profiles of deviation
scores. Dac? and Dpc* now equal 58,
The operation of eliminating differ.
ences in elevation from the profiles
is referred to by Thomson (34) and
others as centering about persons,
Geometrically, it is equivalent to
projecting all persons into a k—1
space orthogonal to the line defined
by the equations a=b=c - - - . Com-
parison of deviation scores is involved
in testing certain hypotheses regard-
ing scatter in mental tests (2). Burt
eliminates elevation when he obtaing
a matrix of covariances between pro-
files for use in factoring persons into
types (3). If we use D as a symbol
for distance between profiles after
projection into E—1 space, we have

the following equation:
H

D't = Do — EAYEly

Here AFE! represents the difference
in elevation between the two persons.
It is evident that the difference be-
tween persons has two components,
one due to elevation, and one due to
the remaining information in the
profile. Treatment of deviation scores
discards information about diffes
ences in elevation, '

When differences in scatter be
tween profiles are eliminated, the
measure of similarity is reduced to8
consideration of shape alone. This#
accomplished by dividing each devi-

tion score by the individual’s scattéf, -

thus standardizing the profile. G4
metrically, this operation amounts¥
projecting every score set in
space onto a k—2 hypersphere. &
center of the hypersphere is at
point representing in k—1 spac
completely flat profile. s
If for each of the three persons ¥
the above example we divide ‘%
deviation profile by his scatter,
obtain the following new pro
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a b ¢ d [
1 1/4 =3/4 —-1/4 172 154
B 1/4 —=3/4 —i1/a 172 1/4
S C 12 —1/6 172 ~1/6 —2/3

Now DA02=D302=2.25. D,{B:’:O as
befare.

Letting D’/ be our symbol for the
D measure obtained from two stand-
ardized score sets,

PP DI~ kAEl—ats
55, Bl

SIS2

Here S is the scatter of an individua]
‘m‘fl AS is the difference in scatter.
[t is clear from this equatisn that by
standardizing the profile we eliminate
rom consideration one further type
of difference between the persons.

Elevation and scatter have com-
.monly been eliminated in past stud-
ies of similarity between persons. It
is easily shown that

D" =21 — Q)

4]

wher‘e Q is the product-moment cor-
relation between scores. It will be
recalled that in product-moment cor-
relation, one subtracts the product of
means from the cross-product terms
and divides by the standard devia-

. tions (which are proportional to the

meastres of scatter). In other words
all correlations between profiles arf;
sssentially measures of distance in
#—2 space.

Equations [3] and [4] make clear
tl}at D in k space will, in general, not
Rive the same result as Q for a given
pair of score sets, nor can D be in-
ferred from factor loadings derived
from Q correlations. Osgood and
Suci (26) demonstrated close cor-
'espondence hetween the two sorts

- of measures, but only for an unusual

et of data where AE! and AS are
:ma[l. Warrington (36) determined
he extent to which information is
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dls_carded in various treatments by
building hypothetical data from a
mathematical model. For his analy-
sis, he employed five factors, repre-
sented with varied loadings in 60
items. Each of his hypothetical per-
sons was assigned scores, distances
between persons were determined,
and these were correlated with dis-
fance measures based on the factor
scores, For perfectly reliable items
the similarity measures correlated
.92 with the criterion, This ‘‘valid-
ity" dropped to .85 when clevation
was removed from the similarity in-
.dex but not from the criterion. For
items of moderate reliability, the
validity dropped from .81 to .55 when
elevation was removed.

RELATION oF OTHER FORMULAS
To THE D MEASURE

Table 1 lists the formulas most fre-
quently used in psychological investi-
gations of profile similarity, together
with some of their more prominent
characteristics.

Treatments in k space. The D
measure presented in formula [1] con-
siders all & dimensions in the original
d:lata. This measure has recently been
discussed by Osgood and Suci (26),
but a quite similar formula appeared
in the literature much earlier, as
Pearson’s ‘‘coefficient of racial like-
ness” (CRL) (27), which was de-
veloped to measure the similarity be-
{ween two groups or the similarity of
an individual to a group. In its origi-
nal form, CRIL was essentially the
same as )% save that all variates were
expressed in standard measure and a
multiplier involving the number of
cases per group was included.

The Pearson index proved unsatis-
factory in the anthropological re-
search for which it was developed.
Some of the criticisms arise out of its
insensitivity to differences of number
of cases from group to group., These



462

criticisms are irrelevant to our pres-
ent purpose. Morand (see Rao, :30)
notes that in some anthropological
rescarch the index has given unrea-
sonable results for groups Wl:ll(:h
were regarded as quite dissimilar,
intuitively or theoretically. From the
context, we judge that this difﬁcg]ty
is a consequence of the high weight
CRL. assigns to general factors among
the variates. This problem tnay arise
in measures of similarity whenever
variates are intercorretated. We shall
discuss the problem of correlation in
more detall later. _
Cattell (6) has proposed an index
rp which is like D in many respects.
He introduces a transiormation, how-
ever, which makes the obtained infilex
range from 1to —1. In our notatiorn,

LT T 2
_ Ko —~ kDY 5]
KZo?+ kD?

where K represents twice t.he median
x* corresponding to the given num-
ber of variates. D or 7, wouuld give
the same results so far as theordering
of dissimilarity is concerned.

Cattell arrived at this index be-
cause he belicves that similarity

Yo
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should be measured by an index
which is comparable to a correlation,
This assumption seems to us neither
necessary nor desirable. I persons
fall into a multivariate normal dis.
tribution there should be very many
similar pairs, and relatively few pairg
who are far from each other. Fur.
thermore, if we are dealing with vari-
ates having an unlimited range then
no matter how far apart person 1 is
from person 2, there is no theoretical
reason why there cannot be a person
3 such that P.P:> PyP.. Therefore
we sce no reason why the measure of
separation should have a limit.
“Complete dissimilarity of persons”
is an undefinable concept.

Webster (37} proposed that intra-
class r might have advantages for
measuring similarity in % space.

-DIZ2
5.2 4 8,2 4 JRATE]
The denominator in [6] is the sum of
squares of scores of both persons
about the grand mean of their scores.
The larger this denominator the

closer will 7;, approach 41 for palrs
having the same D. To illustrate, con-

- [6]

Tin — 1

TABLE 1
SIMILARITY FORMULAS AND THEIR CEARACTERISTICS .
o an Type of
.ngzol a::i Procedure Comjg'bj; rison Remarks
ropone B
la
D {Osgood-Suci, 26; Distance measure k k(il;) k—1, A general formu
Cronbach-Gleser, 11} . b
CRL (Pearson, 27} Distance measure for stand-
ardized variates scale
(Cattell, 6) Transformed distance meas- b (also B—1) Couverti tD tz;l
" , ure for standardized wvari- from 1 to
ates . od here i
k-2 Symbol @ us k
Q (Stephienson, 32) - Produccomee cormention Ctoad of  for clarity
Rho {Spearman) Correlation  across  scores k-2
) ranked within a profile e Highly coreelated with
Tau {Kendall, 25) Based on rank arrangements he ] X Jsed .
imilarity of k—2 FEstimate ot tau
13 Based on tally of similarity o o s
rpe (du Mas, 13} slope along profiles on ﬂ]_._-/
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sider person X with standard scores
1.0, 1.0, on two variates, and person
V with standard scores 1.1, 1.1. For
this pair, D is +/0.02. S for each
person is zero, the denominator is

“small, and 4 is — 1. In other words,

this pair of persons is reported by
intraclass r to have maximum dis-
similarity, whereas the D measure
reports them to be close together. The
definition upon which the D measure

.is based appears to present a more

satisfactory conception of similarity
than the definition embodied in the
intraclass measure.

Treatments in k—2 space. Several
formulas have the effect of measuring
similarity in 2—2 space. We have
already noted that a Q correlation
based on raw scores gives the same re-
sult as obtaining D from scores stand-
ardized within profiles. Correlation
is thus a special case of the D meas-
ure.

Measures of similarity are at times
based on scores ranked from highest
i lowest within the profile. The cor-
relation of two such sets of ranks
vields rho, which is thus Jike Q in
many of its properties. Sometimes
tank correlations are used in the belief
that assumptions regarding the test
*ore metric are thereby avoided,
I'his is not the case. When scores are
nnked, the separation between two
ljacent ranks is fixed over the whole
finge, forcing all profiles into the
ime rectangular distribution. This

“Ureing may be justified in certain

“udies, but it does involve adefinite
SEymption.
. Kendall's tau is a rank correlation
‘sed on the direction ofdifferences
®tween all possible pairs of variates.
.4 is very closely related to rho but
“somewhat more laborious to com-
USte, In some statistical work, it is
M advantage that the sampling dis-
“bution for tau is known.

Du Mas has suggested the coeffi-

-
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cient r,,. Kelly and Fiske drew our
attention to the fact that 7,, is a sort
of approximation to tau, in which
pairs of adjacent variates only are
considered. Results from du Mas’
method therefore depend upon the
order in which variates are listed in a
profile.  Different results would he
obtamed if some other order were
used. 7, is biased when the arrange-
nient of traits is not strictly random.
Furthermore, it uses relatively little
of the information in the profile, and
is therefore inexact. 7, does not ap-
pear to have advantages over rho or
D",

Should differences in elevation be dis-
regarded? A basic question is whether
similarity between score sets is more
meaningfully investigated by allow-
ing differences in elevation to affect
the resulit.,

Cattell (6) and du Mas (14) have
argued that differences in level be-
tween profiles are generally important
and should be included in the index.
For many studies, it is surely desira-
ble not to regard two people as
similar if their profiles have the same
shape but differ in elevation. In the
Wechsler test, for example, the eleva-
tion, being the sum of the scores, is a
measure of over-all ability. The in-
terpretation of the profile shape is de-
pendent upon elevation. The fact
that Vocabulary is higher than Digit
Span means something ‘qualitatively
different for a college graduate with
an 10 of 120 from what it means for
a 10-year-old with an 1Q of 100. To
reduce the data by leaving elevation
out of account may cause people to
appear similar who are quite different
in the domain the investigator de-
sires to study,

On the other hand, there may be
studies in which the elevation compo-
nent is of no interest. 1f, for example,
data are obtained 'from’a personality
questionnaire in which a person re-
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sponds yes or no to each item, and the
total score in each category is the
number of questions marked wyes, the
differences in elevation between per-
sons will be due partly to a response
set (9). The investigator may decide
that this “yessaying tendency” is
irrelevant to his problem, and if so,
he will want to eliminate that com-
ponent from his data. If he makes
such a decision, reduction of the data
to k—1 space is appropriate.

The elevation component in a pro-
file represents the sum (or average) of
all scores, and depends on the direc-
tion of scoring of the wariates. A
trait could be scored as “'submission,"
for instance, instead of “dominance’;
any such reversal alters the composi-
tion of the elevation score. If there
is no particular reason for scoring
each variate in one direction rather
than the other—and this is generally
the case uniess variates are system-
atically correlated—then the eleva-
tion component is determined arbi-
trarily by these scoring decisions. It
is highly undesirable to eliminate the
elevation component when it is thus
arbitrarily defined.

If a genera! factor is present in the
variates it is often possible to choose
a direction for scoring each variate
which yields consistently positive in-
tercorrelations among variates. The
elevation factor, when this set of
scores is used, will be heavily loaded
with the first principal component of
the scores, i.e., the general factor (23).
This first factor may be an important
one to consider in judging the simi-
larity of profiles.

In general, it appears undesirable to
eliminate elevation unless the investi-
gator can iInterpret it definitely as
representing individua! differences in
a quality which he does not wish to
take into account in his similarity
measure. If he is uncertain as to
which is the more appropriate direc-
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tion for scoring each of the variateg,
then the investigator should use thg
measure D in % space. Ebel (15);
working on the problem of similarity
of score sets as it is encountered in
studying the reliability of rating,
makes a similar recommendation, Iy
his problem, the mean level of ratingy
assigned by each rater is comparable
to our elevation. He lists practical
considerations which make it wise at
some times, and unwise at others, tg
consider differences in level in assess.
ing the agreement of raters.

Should differences in scalter be dis-
regarded?  Any treatment which
equalizes scatter of profiles before
computing the difference measure is
equivalent to projecting points onto
the surface of a hypersphere within
the £ —1 space. This has the effect of
increasing the jaggedness of profiles
which are relatively flat, or, we might
say, of reducing the jaggedness of
profiles having a large amount of
scatter, Thisintroduces a serious difh-
culty. Figure 1 illustrates the fact
that in projection onto the sphere dif-
ferences between persons near the
center are much magnified. The
small D', becomes a large D'
D", however, is little greater than
D'z, Points 1 and 2, near the center
of the sphere, represent persons with
flat profiles. Persons who would be
judged quite similar in 2 or k-1
spaces are sometimes reported a8
markedly dissimilar in the £ —2 meas-
ure.

Another aspect of the same problem
is illustrated in Fig. 2. Any profile
contains some error of measurement
so that the location of the indiVH!'
ual in k—1 space is only approX”
mate. We indicate the pD-"’.'-“b]_e
positions in 2—1 space of each indi-
vidual over many trials by 3 clou

of points within the circle. The PO

sible positions a person might tatl:e

in B—2 space are then indica

cof the circle.
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Fi1G, 1. MaGNIFICATION OF DISTANCES IN
PROJECTION ONTO SPHERE

the distribution of points on the edge
It is clear that the
greater the error, the greater the
dispersion in k—1 and %k--2 spaces.
For a person who has a moderate
amount of error and whose scatter is
low, the projection in £ —2 space has
dmost no meaning. On different
trials he might fall anywhere in the
k~2 space, and it is a matter of
thance which persons he is similar
Win a particular set of data. Either

oy we T

Low scatter, Jow error

Low scatter, moderate error
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a high or low value of Q can arise by
chance,

Results from analysis of profiles in
% — 2 space are dependable only when
scatter is large relative to the error
dispersion for the individual. So long
as some profiles may be expected to
be flat or nearly so, treatments of
these profiles in 2—2 space will be
very much influenced by random
error. This difficulty is greatest when
mast of the variance in the £ scores
comprising the profile is accounted
for by a small number of factors. As
more factors are represented in the
variate set it is less likely that flat
profiles will be obtained.

We must question whether the
study of profiles in 2—2 space, or
more specifically whether correlation
between profiles, is a justifiable line
of investigation. This procedure has
the disadvantage of removing the
elevation factor and in addition tends
to magnify error variance. In gen-
eral, therefore, we would regard treat-
ments in k-2 space as inferior to
treatment of the data by D or D",

Such success as Stephenson and his
followers have obtained despite these
difficulties may be explained by pre-
cautions Stephenson has introduced
into his design. For one thing,
Stephenson has always employed a
large number of variates, each one
being an item describing some per-

Rt R
ant AV

',

High scatter, moderate error

Fi16. 2. EFFECT OF ERROR AND SCATTER ON THE PROJECTION ONTO A SPAERE
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sonality trait. If the item intercorre-
lations are not generally positive, the
first component removed as an eleva-
tion factor is a relatively small pro-
portion of the total variance or infor-
mation in the profiles. The part
removed may be an important por-
tion, but the B—1 profile still con-
tains a great deal of useful informa-
tion. The large number of variates
also makes flat profiles in 2—1 space
less frequent.

In Stephenson’s “‘balanced design
questionnaire’” each itemn is accom-
panied by another statement which
has approximately the opposite mean-
ing. By this device, Stephenson
essentially assures that the sum over
all items (i.e., elevation) departs
from zero only by chance, and thus no
information is eliminated from the
data during the statistical elimination
of the elevation component.

The magnification of error in pro-
jection to kB—2 space will be slight
if few persons have flat profiles. This
can be assured by introducing items
which have unequal means for the
group. Then thecentroid of the group
will be far from the center of the
sphere on which persans are pro-
jected, The difficulty with this solu-
tion is that, as the centroid of the
group moves [arther from the center
of the sphere, persons are less dif-
ferentiated in 2—2 space, and error
accounts for a larger proportion of
the dispersion.

It is not surprising that most pro-
hle studies today utilize comparisons
in k—2 space, since the problems
have been conceived in terms of cor-
relation as used to study relation-
ships between tests. It is question-
able, however, whether that modelis a
particularly good one. In determin-
ing the similarity between two fesis,
it is reasonable to eliminate the mean
and variance from consideration. As
Thomson (34) and Burt (4) have

LEE J. CRONBACH AND GOLDINE C. GLESER

pointed out, the test mean representg
its general level of difficulty for the
population, while the variance is g
function of the units used. Differ.
ences between tests in these valuesare
usually quite arhitrary, depending on
the choice and number of items,
When we are mainly interested in the
underlying relationship between tests
these differences are of no importance
and are neglected in the correlation
formula. In dealing with similarity
of iudividuals, however, it is neces-
sary to consider rather carefully what
logic is involved when individuals are
equated for level and scatter.

Measures in £—2 space can give
useful information only if both the
dispersion of persons in 2—1 space
and the scatter for nearly all persons
are large relative to the error disper-
sion. Data in 2—1 space are required
to determine whether these condi-
tions are met. Then one can deter-
mine whether profiles in 2—1 space
are reliable, and whether there are
many flat profiles. The investigator
can, if he wishes, eliminate the people
with flat profiles from the study. The
forced-sort does not collect data on
scatter, and one has no basis for judg-
ing which profiles are reliably lo-
cated.

It seems quite important for those
studying similarity toinvestigate rel{-
ability directly by obtaining two est-
mates for each profile. Reliability_of
k—2 space measures has ordina.rlly
not been examined in past investiga-
tions of similarity.

In those studies where k—2 space
measures have been used in the past:
properly interpreted positive results
need not be discounted. The fal!lt-"
to which we have drawn attentioh
operate to obscure true relations an
to make the measurement techniqué
insensitive. This would make no?”
significant results likely in some 191
stances where a better technlqug

.
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~would find more relationship. It

would tend to make particular Q cor-
relations or differences between such
correlations undependable and incon-

sistent,

In summary, our consideration of
all possibilities leads us to the opin-
ion that the most generally advisable
procedure for comparing profiles is to
employ D in % space, except where
it 1s known that the elevation factor

- 1s saturated with a variable which it

is desired not to consider.
CONTRIBUTION OF EACH VARIATE TO
THE SIMILARITY MEASURE

The Mahalanobis distance. A for-
mula which we have not discussed to

_ this point is the generalized distance

measire of Mahalanobis {sece Rao,
30). The Mahalanobis distance is
found from the formula:

D! = 3 > afi'AxAx; [7]
i 5

where @i/’ is the jj’ clement of the in-
verse of the covariance matrix be-
tween variates within groups. We use
D to distinguish this measure from
our D. The Mahalanobis measure was
designed for the purpose of measuring
the distance between groups, rather
than between individuals, but the

- formula can also be interpreted as

related to the difference between in-
dividuals, If this is attempted, the
intercorrelations of the wvariates for
an appropriate reference group must

- be known.

The D measure 1§ a measure of
similarity in which the orthogonal
tomponents of the original set of
variates are assigned equal weight.
In other words, the complex formula
oresented above vields the same re-
sults as would be obtained if one
factored the correlation matrix into
% orthogonal factors, computed the
Person’s scores on these components,
and then applied the D formula to
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measure similarity.  For variates
which are standardized and uncor-
related D is identical to D,

D hasseveral interesting properties.
It has a known distribution function
and thus forms a basis for testing the
significance of a difference between
groups. Moreover, D is closely related
to Fisher's discriminant function,
and particularly to the proportion of
individuals classified into the wrong
group by the most efficient possible
discriminant function (30, p. 180).
It is not, however, especially suited
to the descriptive problem which we
are discussing.

In any set of correlated variates,
some variance is due to general quali-
ties or factors represented in several
variates, some due to meaningful
factors found only in a single variate,
and some due to error of measure-
ment. In a principal-components
analysis, % factors will be determined
but the last factors may be almost
entirely due to error of measurement.
The Mahalanobis measure weights
unrcliable and unimportant factors
cqually with the first [ew components
in the variates. That is, it assumes
that any % wvariates represent #k
equally important factors. This is un-
desirable in a descriptive index, since
differences between individuals on
factors which are not well repre-
sented in the test battery will be
unstable from one trial to another,
and hence D for individuals will be
unstable. When the formula is ap-
plied to differences between groups,
no such problem arises, for groups
will show negligible differences on
factors which consist largely of error.

Wetghts in the D measure. The in-
terpretation of the D measure is
facilitated if we consider what weight
it assigns to the orthogonal compo-
nents underlying the variates, Some
investigators have proposed that un-
correlated scores be emiployed in any
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study of similarity., We find, how-
ever, that a meaningful interpreta-
tion can be made when D is applied
to correlated variates.

First, we may note that when the
variates used in formula [1] are un-
correlated, they contribute to D? in
proportion to their variances. Hence
the investigator who standardizes his
variates is assigning equal weights
to them, and any difference in vari-
ances assigns greater weight to some
of the tests than to others. When
variates are correlated, D? is depend-
ent not only on the relative variances
of the variates used, but also on the
configuration of the variates in the
factor space.

In order to obtain some insight as
to the weighting of factors resulting
from the use of formula 1] on carre-
lated wvariates, let us consider first
the case in which all variates are
standardized. Then D? computed
from such standardized scores is
identical with that abtained if one
were to determine the principal axes
of the test configuration, compute
each individual's score on each of
these components, and then weight
these component scores by the square
root of the latent root for that com-
ponent before computing D24 The

t The following demonstration of this rela-
tionship is based on C. Harris' suggestion (21)
that properties of I? can be studied by describ-
ing the measure in matrix notation. Let us
define the matrix S as the array of standard-
ized scores of persons, where columns pertain
to individuals and rows to tests. S=FX
where Fis the matrix of factor loadings of the
tests obtained by the principal-axis method
and X represents the matrix of subjects’
standard scores on the factors. Then if Fis
nonsingular one can obtain the X matrix from
X=F15,

Suppose, however, we weight the factor
scores by the square root of the appropriate
latent roots. Let L signify the diagonal
matrix of latent roots, Then

LK =[S
and
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principal-axis solution is a method of
factor analysis which removes a4
much of the variance as possible iy
each successive factor. The latent
root corresponding to each factor re.
flects the proportion of variance that
is accounted for by that factor. Thus,
D* weights foclors according lo lheiy
represenialion in lhe lest configurg.
tion.

When an investigator employs 3
group of correlated variates, the fact-
ors represented most frequently
among his measures are often es.
pecially important to the problem
under investigation. If the D meas-
ure were applied to a Wechsler pro-
file, for example, the general factor
running through the variates would
have higher weight than any more
specific element found in only one or
two subtests, and this might be
wholly desirable.

The relatively large weight as-
signed to the first principal compo-
nent must be considered in interpret-
ing results even of data gathered by
means of the Q sort where elevation
per se has been eliminated. Rogers'
work will serve as a convenient exam-
ple of this possible difficulty. He had
a patient describe herself and her
ideal by @ sort before and after

(X' L) (LV2X) = (§'F 1Lz (LY F1S)
=S FILFS.

Since F' F=L, for a principal components solu-
tion,

(X' LY (LX) = §' F-1F FF-1§ =55

Now Harris has shown that D is obtamfd
from .5'S by adding any two diagonal'enmﬁ
representing two persons and subtracting t
corresponding  off-diagonal  entries. f
forming this operation on the maﬂ'l’
X' gives the same result as an

tion on S5 itseli. Therefore D from f t
scores weighted by square roots O

roots is identical to D from standard scof”an
tests. [f Harris’ operation were perfoﬂ“d\w
the matrix X'X, the result would be:¥
Mahalanocbis measure D. ‘

“ have assuined

A
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therapy (31). He found that the pre-
and posttherapy selves were not
highly similar, that the two ideals
were closely related, and that the Q
correlation between self and ideal
was increased after therapy. This
might be interpreted as a change in
the structure or configuration of per-
sonality. 1f, however, many of the
itemns express a general “adjustment”
{actor, then there is a strong common
bipolar factor running through the
items. This factor will have large
weight in the @ correlation. We
therefore cannot be sure whether the
results in Rogers' study are due to
configurational changes in the per-
sonality of his subject, or due merely
to her increased willingness to de-
scribe herself as well-adjusted.

The recognition that the D) meas-
ure allows greater weight to factors
which are represented more strongly
in the score set emphasizes the im-
portance of choosing the original
variate set with care (16). In studies
where the variates are assembled as
2 random collection of items, there
is considerable danger that the
weights assigned to the various psy-
chological components will not be
lully appropriate.

In our discussion to this point we
that variates are
standardized. In Wechsler profiles,
lor instance, this is accomplished by
the use of a standard score scale for
tach subtest. In the majority of in-
vestigations of profile similarity, sim-
llarity has been determined from raw
scores on tests or items. The con-
tibution of each principal compo-
lent to D2, when unstandardized vari-
tes are used, is proportional to the
YWrresponding latent root of the
“variance matrix between variates.
'his means that the contribution of
iny component to the D measure de-
Pends upon the number of variates
n which it appears, its loading in

469

those wvariates, and the variance of
the tests in which it appears.

In many studies the first principal
component will have a weight sub-
stantially greater than that for the
remaining components. While the
investigator may be willing to let the
weights on the lesser components fall
out by chance, he may have a specific
reason for desiring to reduce the
weight given to the outstanding first
component. In a study of the similar-
ity of persons in the domain of adjust-
ment, for instance, he may wish to
group people more nearly according
to the character of their complaints
than according to their degree of ad-
justment. This degree of adjustment
is likely to loom large as a factor in a
set of adjustment measures, how-
ever. We therelore suggest the possi-
bility of computing an elevation score
for each person, and determining a
new measure D,:

8]

D, = D* — k(1 — w)AEL
Here, the weight @ can range from
zero to 1, with the extreme values
vielding D'? and D*, respectively.

Before leaving this subject, we
should note that the weights of
variates in D’ are proportional to the
contributions of the principal com-
ponents to the variate set after the
elevation factor is eliminated. The
elevation factor is usually very nearly
the same as the first principal compo-
nentif variates are positively intercor-
related. The transformation of data
to eliminate scatter, which is involved
in treatments in k—2 space, pro-
duces substantial alterations in the
intercorrelation of variates. For this
reason, the factors which account
for most of the variance in %2 and
b—1 space may not be the same as
the principal componentsfin k—2
space.

Our recommendation on the basis
of all the foregoing considerations is
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that the investigator may properly
use I} or D,, whether variates are
correlated or not. He should give
careful thought to the question of
whether or not to standardize vari-
ates. In many studies of similarity
it is probably desirable to perform a
factor analysis on the matrix of corre-
lations or covariances among tests
before studying similarity of persons,
This permits the investigator to se-
lect his set of traits or their weighting
on a more intelligent basis than he
could without the factor analysis.

Cluster scoring. 1t may often be de-
sirable to employ many items to
measure a much smaller nnmber of
traits. This is the plan used in as-
sembling items for many tests (e.g.,
Kuder, Guilford-Martin}. Considera-
tion should therefore be given to spe-
cial problems arising for such a set of
items. A partienlarly important
guestion is whether the #ems should
be treated as variates in the D) meas-
ure, or whether scores on clusters of
items (i.e., subtests) should be used.

When assembling groups of items
to measure particular traits it is dif-
ficult .for the investigator to male
sure that these traits will have the de-
sired weight in the 17 measure based
on item scores. The principal com-
ponents of the items will not be the
same as the intended traits. Each
trait will be a complex and unknown
combination of thc principal com-
ponents.  Its weight will depend
highly on the choice of items and
their particular factor structure.

The investigator has several pos-
sible procedures which may help him
to approach the desired weights.
Stephenson has suggested construct-
ing items which syatematically sam-
ple the domain of traits under con-
sideration (32). If this sampling were
perfect, he would insure uniform
coverage of the domain so that the
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traits would be uniformly weighted,
This approach is likely to succeeq
only if the item writer has more
knowledge of the factorial structure
of personality items than is presently
available. Another solution is to per.
form a factor analysis on the set of
items, then rotate to the desired
factor solution and obtain trait scoreg
on which to compute similarity
measures. This, however, is generally
impractical.

In some cases a more practical
solution is to combine items into
groups or clusters and obtain subtest
scores for each person. Such cluster
scoring is feasible only when there isa
logical or statistical basis for com-
bining items, Cluster scoring may be
based on a priori grouping of items,
but these groupings should be an-
alvzed for internal consistency. From
the matrix of intercorrelations of the
pool of items, it would be possible to
assign items to relatively homogene-
ous subtests (12).

D based on cluster scores weights
the underlying components of the
items differently from I} based on the
original items. In the cluster dis-
tance, the element common to the
several items is given greater weight
than it has when the distances on
the separate items are combined.
The sum of a group of items gives
relatively great weight to factors
present in more than one item (10,
23). If specific factors each present
in only one item are not especially 1m-
portant, cluster scoring reduces their
combined weight in order to EIV€
greater weight to the common ele-
ment running through a whole grouP
of items, To give a specific il[u§tfa’
tion, a score on hypochondriasis of
health adjustment based on a nu™”
ber of items will give great weight to
a general tendency to claim SOm_""?;i
symptoms. It will give less WeiB
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symptoms such as a tendency to have
colds or to have headaches.
In the same manner that clnster
scoring reduces the weight given to
specifics, it also reduces the weight
given to differences between persons
arising from error of measurement,
Hence cluster scores, and similarity
measures based on them, will he
more reliable than scores based on
the items. Warrington (36), with his
hypothetical data, has confirmed this
greater  dependability of cluster-
scored profiles. For one particular
criterion, for instance, using (J-sort
data, he found these validity coeffi-
clents:
D measure based on items as variates,
perfect item reliability .70

D measure based on clusters as variates,
perfect itemn reliability .74

D measire based on items as variates,
moderate item reliability .18

D measure based on clusters as variates,
moderate item reliability .66

It is apparent that cluster scoring
overcomes much of the loss of infor-
mation due to item unreliability.
Stephenson is now essentially using
cluster scoring in his analysis of vari-
ance based on the Q sort (33).
Cluster scoring has an interesting
effect on data gathered by means of a
0 sort. In this case even though indi-
viduals cannot differ in scatter over
lhe total set of items, their subtest
vrofiles can differ widely in scatter.
Thus it is possible for some persons
to have flat cluster profiles and others
o have a high degree of scatter. This
results because cluster scores utilize
rinsiderably fewer degrees of freedom
than are implied in the item profile.

Some SHORT-Cur FOrRMULAS

In the course of our investigation,
Ye have discovered the possibility of
tveloping  short-cut formulas for
udying groups of persons. These
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L_Lhan the item scores to specific are not entirely satisfactory, because

they are based on the average of D?
over a set of pairs. In general, D pro-
vides a better metric than D? for
studying similarity, since large dis-
tances are much magnified in squar-
mg. The following formulas may
nonetheless be useful as a first rapid
way of answering questions about
groups. The formulas also provide
insight into the nature of distance
measures, since factors which in-
crease mean 1 will also in general in-
crease mean D and median . The
formulas are particularly useful as a
tool for checking computations,

In any group, the mean distance
between persons over all pairs of per-
sons in the sample is

2 Vi [9]

Dyt =2
N—1%5

V; is the variance, equivalent to a2
This is an expression for the homo-
geneity of a group or its dispersion.
If we take one-hall the mean D*
within the group, we obtain the mean
dispersion (distance sguared) from
the centroid of the sample.

The average I* of an individual ¢
from other members of this Group
Y, is obtained from

Dt = (OyP2+4 25 V). [10]

N -1

Here 7’ varies over all other persons
in Group ¥, Oy is the centroid of the
sample, and OpP; is the distance from
¢ to this centroid. @ has the coordi-
nates &;, the average for j in Group ¥.
If ¢ is not a member of ¥, the coeffi-
cient N/N—1 is dropped to get the
average D from ¢ to all members of ¥,

The average I* between members
of two groups, that is, the average
when each member of one group is
paired with every member of the
other is



472

Dy = OyPE + OzP% + Ov02%(i = 1,
2,---Nyyi'=1,2,---Nz). [11]

Here we see the average cross-simi-
larity as made up of three compo-
nents:squared distance between group
means, dispersion within the first
group, and dispersion within the
second group.

CONCLUSIONS

Studies of similarity between sets
of scores have used a large number of
techniques for assessing similarity.
The most satisfactory model appears
to be to conceive of the tests as co-
ordinates, and each person’s scare set
as a point in the test space. Then dis-
tances hetween points, computed by
the D measure, are an index of simi-
larity between score sets. This meas-
ure is a general one, to which other
common techniques such as @ cor-
relation can be related, These other
techniques frequently disregard or
distort some of the information in
the data, in ways which may be un-
desirable in a particular study.

The investigator of similarity must
give particular attention to his choice
of variates. The similarity measure
depends on the content of the variate
sets, on the scales used for measuring
the variates, on the choice among
possible similarity indices, and upon
the decision whether to score sepa-
rate variates or clusters of variates
(i.e., subtests). The similarity index
gives especially large weight to the
first principal component among the
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scores or items, and therefore mjy
be relatively insensitive to the shape
or configuration of profiles. On the
other hand, techniques which leavye
the elevation of the profile out of
account are usually undesirable, A
formula for a weighted similaﬁw
index 1s offered to reduce any over.
emphasis on the first component.

Many commonly used operations,
including the Q sort and product-
moment correlation between persons,
ipnore differences in scatter between
profiles. It is not generally desirable
to do this, especially because if any
profiles are relatively flat, the simi-
larity indices involving them will be
highly unreliable. The loss of infor-
mation about differences in scatter
may also be undesirable on theoret-
ical grounds.

It is most important that any in-
vestigator understand the assump-
tions and limitations of whatever
technique he employs to study simi-
larity.  Different treatments will
yield different conclusions. In many
studies, the most appropriate tech-
nique will be to apply the formula
for D or D, to profiles based on
¢lusters of items.

Profile research is necessarily.faced
with many difficulties. In Splte.C'f
these, it is our hope that the adoption
of techniques which include as much
information as the data provide, an
which do not introduce additiona
errars of their own, will permit stud-
ies of similarity to advance psycho
fogical knowledge.

REFERENCES

1. BarneTTE, W. L. Occupational aptitude
patterns of selected groups of counseled
veterans. Psychel. Monogr., 1951, 65,
No. 5 (Whole No. 322).

2. BLock, J., LEvINE, L., & McNEMAR, Q.
Testing for the existence of psycho-
metric patterns. J. abnorm. soc. Psy-
chol., 1951, 46, 356-359.

3. Burt, C. L. Correlations betweeﬂpg;‘é:
-

sons, Brit, J. Psychsl., 1937, 2'8, 5
4, Burrt, C. L. The faclors of the msﬂd-94 1
don: Univer. of London Press, 1755

o1

5. CaLbweLL, BETTYy McD., ULETT 16 of

MensH, I, N., & Gravick, 5. L
data in Rorschach interpretatios:
chin. Psychol., 1952, 8, 374379

b

9.

10.

i,

ASSESSING SIMILARITY BETWEEN PROFILES

. CarreLL, R. B. r, and other coefficients

of pattern similarity.
1949, 14, 279-298.

Psychometrika,

. CattELL, R. B, On the disuse and misuse

of P, Q, Q., and O techniques in clinical
psychology. J. clin. Psychol., 1951, 7,
203-214,

. CatTELL, R. B, The three basic factor-

analytic research designs—their inter-
relations and derivatives.  Psvchol.
Bull., 1952, 49, 499-520,

CroxeacH, L. J. Further evidence on
response sets and test design. KFdue,
psychel. Measmi, 1950, 10, 3-31.

CroxBacH, L. J. Coefficient alpha and
the internal structure of tests. Psycho-
melrika, 1951, 16, 297-334.

. CronBacH, L. J., & GLESER, GOLDINE.

Similarity between persons and rte-
lated problems of profile analysis.
Urbana: Univer. of 1llinois, 1952,
Tech. Report Ne. 2, under contract
N6ori-07135 with the Bureau of Naval
Research (Mimeo.) American Docu-
mentation Institute, ADI Auxiliary
Publications Project, Photoduplication
Service, Library of Congress, Washing-
ton 25, D, C., Document No. 3921,
$2.75, microflm; $7.50, photostats.

. DuBois, P, H., LoEvINGER, JaNE, &

GLESER, GOLDINE C. The construction
of homogeneous keys for a biographical
inventory. Human Resources Research
Ceuter, Resegrch Bulletin, 1952, 52-18.

. DU Mas, F. M. A quick method for ana-

lyzing the similarity of profiles. J. clin.
Psychol., 1946, 2, 80-83.

. DU Mas, F. M, On the interpretation of

personality profiles. J. clin. Psychol.,
1947, 3, 57-65.

3. EBer, R, L. Estimation of the reliability

of ratings.
407-424.

Evsenck, H. J., Personality. In C. P,
Stone (Ed.), Annual Review of Psy-
chology. Vol. 3. Stanford: Annual Re-
views, 1952, Pp. 151-174.

Psycliomelrika, 1951, 16,

. FiepLER, F. E. A method of objective

quantification of certain counter-trans-
ference attitudes. J, clin. Psychol.,
1951, 7, 101-107.

. FosBERG, I. A, An experimental study of

thereliability of theRorschach technique,
Rorschach Res. Exch., 1941, 8, 72-84,

. GAGE, N. L. Judging interests from ex-

pressive behavior, Psyckol., Monogr.,
1952, 66, No. 18 (Whole No. 350).

W Garer, E. L., & Leg, MariLyn C. Pat-

tern analysis: the configural approach
to predictive measurement. Psychol.
Buyll., 1953, 50, 140-148.

473

21. Harrrs, C. W. Note on profile similarity.
Unpublished manuscript.

22. Hoboees, J. L., Jr. Discriminatory analy-
eis: I. Survey of disctiminatory analy-
sis, USAF School of Aviation Medicine,
Randolph Field, Texas, 1950.

23. HoLziNGeR, K. J. Factoring testscores
and implications for the method of aver-
ages. Psychomelriks, 1944, 9, 257-262.

24. Kewry, E. L., & Fiskg, D. W. The pre-
diction of performance in clinical psy-
ckology. Ann Arbor: Univer. of Michi-
gan Press, 1951,

25. KenoaLL, M. G. Rank correlation meth-
ods. London: Griffin, 1948,

26. Oscoop, C. E,, & Suct, G. A measure of
relation determined by both mean
difference and profile information.
Psychol, Buil,, 1952, 49, 251-262,

27. Pearson, K. On the coefficient of racial
likeness, Biometrska, 1928, 18, 105-
117,

28, Rasin, A. 1., & GUERTIN, W. H. Re-
search with the Wechsler-Bellevue test:
1945-1950,  Psychol, Bull., 1951, 48,
211-248,

29. Rao, C. R. Tests of significance in multi-
variate analysis, Biomelrika, 1948, 35,
58-79.

30. Rao, C. R. The utilizaticn of multiple
measurements in problems of biological
classification. J. roy. staf, Sec., Sec. B.,
1948, 10, 159-203.

31. RogcEers, C. R. The case of Mrs, Qak—a
research analysis, Studies tn clent-
centered  psychotherapy, Psychological
Service Center Press, Washington, D.C.,
1952, 47-165.

32, SteraENsON, W. A statistical approach
to typology; the study of trait-uni-
verses, J, clin. Psychol, 1930, 6, 26—
38,

33. SrepHENson, W. Some observatious on
technique, Psyckol. Bull, 1952, 49,
483-4938.

3. Tromson, G. The factorial analysis of
human ability. (4th Ed.) London: Uni-
ver, of London Press, 1950,

35, TypLER, F, T. Some examples of multi-
variate analysis in educational and
psychological research, Psychomelrika,
1952, 3, 289-296.

36, WARRINGTON, W. G. The efficiency of the
Q-sort and other test designs for meas-
uring the similarity between persons.
Unpublished doctor’s dissertation, Uni-
ver, of THinois, 1952,

37. WEBSTER, H,, A note on profile similar-
ity. Psychol. Bull., 1952, 49, 538-539,

Received February 7, 1953,



