# EUI Lectures in Quantitative Macroeconomics 

Ellen R. McGrattan

MAY 2015

Materials at ftp.mpls.frb.fed.us/pub/research/mcgrattan

Outline of Lectures
I. Business cycle accounting: Methods and misunderstandings
II. Beyond business cycle accounting: Some applications
III. Back to methods: Nonlinearities and large state spaces
I. BCA: Methods and Misunderstandings

## Some Background

- Want preliminary data analysis technique
- Goals:
- Isolate promising classes of models/theories/stories
- Guide development of theory
- Avoid critiques of structural VARs
- Equivalence results:
- Detailed models with frictions observationally equivalent to
- Prototype growth model with time-varying wedges
- Accounting procedure:
- Use theory plus data to measure wedges
- Estimate stochastic process governing expectations
- Feed wedges back one at a time and in combinations
- How much of output, investment, labor accounted for by each?


## Prototype Growth Model

- Consumption $(c)$, labor $(l)$, investment $(x)$ solve

$$
\begin{aligned}
& \max _{\left\{c_{t}, l_{t}, x_{t}\right\}} E \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, l_{t}\right) \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+r_{t} k_{t}+T_{t} \\
& k_{t+1}=(1-\delta) k_{t}+x_{t}
\end{aligned}
$$

- Production: $y_{t}=A_{t} F\left(k_{t}, \gamma^{t} l_{t}\right)$
- Resource: $c_{t}+g_{t}+x_{t}=y_{t}$


## Prototype Growth Model

- Consumption $(c)$, labor $(l)$, investment $(x)$ solve

$$
\begin{aligned}
& \max _{\left\{c_{t}, l_{t}, x_{t}\right\}} E \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, l_{t}\right) \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+r_{t} k_{t}+T_{t} \\
& k_{t+1}=(1-\delta) k_{t}+x_{t}
\end{aligned}
$$

- Production: $y_{t}=A_{t} F\left(k_{t}, \gamma^{t} l_{t}\right)$
- Resource: $c_{t}+g_{t}+x_{t}=y_{t}$

Note: Time-varying wedges (in red) are not structural

First-order Conditions of Prototype Model

- Efficiency wedge:

$$
y_{t}=A_{t} F\left(k_{t}, \gamma^{t} l_{t}\right)
$$

- Labor wedge:

$$
-\frac{U_{l t}}{U_{c t}}=\left(1-\tau_{l t}\right)(1-\alpha) y_{t} / l_{t}
$$

- Investment wedge:

$$
\left(1+\tau_{x t}\right) U_{c t}=\beta E_{t} U_{c t+1}\left[\alpha y_{t+1} / k_{t+1}+\left(1+\tau_{x t+1}\right)(1-\delta)\right]
$$

- Government consumption wedge:

$$
c_{t}+g_{t}+x_{t}=y_{t}
$$

## First-order Conditions of Prototype Model

- Efficiency wedge:

$$
y_{t}=A_{t} F\left(k_{t}, \gamma^{t} l_{t}\right)
$$

- Labor wedge:

$$
-\frac{U_{l t}}{U_{c t}}=\left(1-\tau_{l t}\right)(1-\alpha) y_{t} / l_{t}
$$

- Investment wedge:

$$
\left(1+\tau_{x t}\right) U_{c t}=\beta E_{t} U_{c t+1}\left[\alpha y_{t+1} / k_{t+1}+\left(1+\tau_{x t+1}\right)(1-\delta)\right]
$$

- Government consumption wedge:

$$
c_{t}+g_{t}+x_{t}=y_{t}
$$

Next, consider mappings between this and other models



## Models with Intangible Investment

- Detailed economy of McGrattan-Prescott ("data"):
- Two technologies for producing
- Final goods and services
- New trademarks and patents
- Shocks to both productivities
- Prototype economy:
- To account for "data," CKM need variation in $A, \tau_{l}$
- $A$ variation is (partly) intangible capital movements
- $\tau_{l}$ variation is due to mismeasuring productivity


## Models with Intangible Investment

- Detailed economy of McGrattan-Prescott ("data"):
- Two technologies for producing
- Final goods and services
- New trademarks and patents
- Shocks to both productivities
- Prototype economy:
- To account for "data," CKM need variation in $A, \tau_{l}$
- $A$ variation is (partly) intangible capital movements
$-\tau_{l}$ variation is due to mismeasuring productivity

We'll return to this later...

## Measuring Wedges

- Stochastic Process for wedges $s_{t}=\left[\log A_{t}, \tau_{l t}, \tau_{x t}, \log g_{t}\right]$

$$
\circ s_{t+1}=P_{0}+P s_{t}+Q \eta_{t+1}
$$

- Preferences and technology
- $U(c, l)=\log c+\psi \log (1-l)$
- $F(k, l)=A k^{\theta} l^{1-\theta}$
- With data from national accounts
- Fix parameters of technology and preferences
- Compute MLE estimates of $P_{0}, P, Q$


## Recovering Wedges

- Model decision rules are $y\left(s_{t}, k_{t}\right), x\left(s_{t}, k_{t}\right), l\left(s_{t}, k_{t}\right)$
- Set:
- $y\left(s_{t}, k_{t}\right)=y_{t}^{D A T A}$
- $x\left(s_{t}, k_{t}\right)=x_{t}^{D A T A}$
- $l\left(s_{t}, k_{t}\right)=l_{t}^{D A T A}$
- $g\left(s_{t}, k_{t}\right)=g_{t}^{D A T A}$
with $k_{t}$ defined recursively from accumulation equation
- Solve for values of $s_{t}=\left[\log A_{t}, \tau_{l t}, \tau_{x t}, \log g_{t}\right]$
- Inputting these values gives exactly same series as in data


## Main result for US Episodes

- Investment wedge plays small role in
- Great Depression
- Post WWII business cycles
$\Rightarrow$ Implies many existing theories not promising, e.g.,
- Models with agency costs
- Models with collateral constraints


## Wedges for US Great Depression



## Predicted Output without Investment Wedge



## Predicted Hours without Investment Wedge




## Predicted Output without Investment Wedge



## Predicted Hours without Investment Wedge



Christiano and Davis Critiques of BCA

## Critique 1: Results Sensitive to Capital Tax Choice

- Original budget constraint with wedge $\tau_{x t}$

$$
c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+r_{t} k_{t}+T_{t}
$$

- Alternative budget constraint with wedge $\tau_{k t}$

$$
c_{t}+k_{t+1}-k_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+\left(1-\tau_{k t}\right)\left(r_{t}-\delta\right) k_{t}+T_{t}
$$

- Christiano-Davis claim: results sensitive to choice of $\tau_{x t}, \tau_{k t}$


## Critique 1: Results Sensitive to Capital Tax Choice

- Original budget constraint with wedge $\tau_{x t}$

$$
c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+r_{t} k_{t}+T_{t}
$$

- Alternative budget constraint with wedge $\tau_{k t}$

$$
c_{t}+k_{t+1}-k_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+\left(1-\tau_{k t}\right)\left(r_{t}-\delta\right) k_{t}+T_{t}
$$

- Christiano-Davis claim: results sensitive to choice of $\tau_{x t}, \tau_{k t}$

Are they right?

## Critique 1: Results Sensitive to Capital Tax Choice

- Original budget constraint with wedge $\tau_{x t}$

$$
c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+r_{t} k_{t}+T_{t}
$$

- Alternative budget constraint with wedge $\tau_{k t}$

$$
c_{t}+k_{t+1}-k_{t} \leq\left(1-\tau_{l t}\right) w_{t} l_{t}+\left(1-\tau_{k t}\right)\left(r_{t}-\delta\right) k_{t}+T_{t}
$$

- Christiano-Davis claim: results sensitive to choice of $\tau_{x t}, \tau_{k t}$

Are they right? No!

## CKM Response (Fed Staff Report 384)

- Theoretically, the two economies are equivalent
- Numerically,
- Can differ slightly if FOCs linearized
- But find tiny difference even with extreme adjustment costs



## CKM Response (Fed Staff Report 384)

- Theoretically, the two economies are equivalent
- Numerically,
- Can differ slightly if FOCs linearized
- But find tiny difference even with extreme adjustment costs
- Why did CD find a difference?


## CKM Response (Fed Staff Report 384)

- Theoretically, the two economies are equivalent
- Numerically,
- Can differ slightly if FOCs linearized
- But find tiny difference even with extreme adjustment costs
- Why did CD find a difference?
- Answer: they didn't fix expectations


## Need to Keep Expectations Fixed

- Let $s_{t}=\left[s_{1 t}, s_{2 t}, s_{3 t}, s_{4 t}\right]$ be latent state vector

$$
s_{t+1}=P_{0}+P s_{t}+Q \epsilon_{t+1}
$$

- In practice, associate wedges with elements of $s_{t}$ :

$$
\log A\left(s^{t}\right)=s_{1 t}, \tau_{l}\left(s^{t}\right)=s_{2 t}, \tau_{x}\left(s^{t}\right)=s_{3 t}, \log g\left(s^{t}\right)=s_{4 t}
$$

- For one-wedge contribution, say, of efficiency wedge:

$$
\log A\left(s^{t}\right)=s_{1 t}, \tau_{l}\left(s^{t}\right)=\bar{\tau}_{l}, \tau_{x}\left(s^{t}\right)=\bar{\tau}_{x}, \log g\left(s^{t}\right)=\log \bar{g}
$$



Critique 2: BCA Ignores "Spillover Effects"

- CD use VAR approach
- Find financial friction shock important for business cycles
- Argue the finding is inconsistent with BCA results
- CKM use BCA approach
- Find investment wedge plays small role for business cycles
- Argue that CD finding is consistent with BCA results

Critique 2: BCA Ignores "Spillover Effects"

- CD use VAR approach
- Find financial friction shock important for business cycles
- Argue the finding is inconsistent with BCA results
- CKM use BCA approach
- Find investment wedge plays small role for business cycles
- Argue that CD finding is consistent with BCA results
- How can it be consistent?


## Critique 2: BCA Ignores "Spillover Effects"

- CD use VAR approach
- Find financial friction shock important for business cycles
- Argue the finding is inconsistent with BCA results
- CKM use BCA approach
- Find investment wedge plays small role for business cycles
- Argue that CD finding is consistent with BCA results
- How can it be consistent?
- VAR sums effects of a particular shock acting on all wedges
- BCA sums movements in investment wedge due to all shocks

Popular Alternative to BCA: Structural VARs

## Current Practice: Structural VARs

- Provide summaries of facts to guide theorists, e.g.,
- What happens after a technology shock?
- What happens after a monetary shock?
- Impulse responses used to identify promising classes of models, e.g.,
- If SVAR finds positive technology shock leads to fall in hours
- Points to sticky price models (not RBC models) as promising
- SVARs are used a lot . . . but are they useful guides for theory?


## An Evaluation of SVARs Using Growth Model

- Use prototype growth model
- Plot theoretical impulse response from model
- Generate data from model and apply SVAR procedure
- Plot empirical impulse response identified by SVAR procedure
- Compare responses


## Main Findings for SVAR Study

- Using growth model with SVAR assumptions met
- Asking, What happens after technology shock?
- Find:
- SVAR procedure does not uncover model's impulse response
- Having capital in model requires infeasibly many VAR lags
- Earlier equivalence results imply that SVARs are not useful guides

What You Get from SVAR Procedure

- Structural MA

$$
X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma
$$

## What You Get from SVAR Procedure

- Structural MA for $\epsilon=$ ['technology shock', 'demand shock']'

$$
X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma
$$

where $X_{t}=[\Delta \text { Log labor productivity, }(1-\alpha L) \text { Log hours }]^{1}$

## What You Get from SVAR Procedure

- Structural MA for $\epsilon=$ ['technology shock', 'demand shock']'

$$
X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma
$$

where $X_{t}=[\Delta \text { Log labor productivity, }(1-\alpha L) \text { Log hours }]^{\prime}$

- Identifying assumptions:
- Technology and demand shocks uncorrelated ( $\Sigma=I$ )
- Demand shock has no long-run effect on productivity


## Impulse Responses and Long-Run Restriction

- Impulse response from structural MA:

Blip $\epsilon_{1}^{d}$ for response of productivity to demand

$$
\begin{aligned}
& \log \left(y_{1} / l_{1}\right)-\log \left(y_{0} / l_{0}\right)=A_{0}(1,2) \\
& \log \left(y_{2} / l_{2}\right)-\log \left(y_{0} / l_{0}\right)=A_{0}(1,2)+A_{1}(1,2) \\
& \vdots \\
& \log \left(y_{t} / l_{t}\right)-\log \left(y_{0} / l_{0}\right)=A_{0}(1,2)+A_{1}(1,2)+\ldots+A_{t}(1,2)
\end{aligned}
$$

- Long-run restriction:

Demand shock has no long run effect on level of productivity

$$
\sum_{j=0}^{\infty} A_{j}(1,2)=0
$$

## Deriving Structural MA from VAR

- OLS regressions on bivariate VAR: $B(L) X_{t}=v_{t}$

$$
X_{t}=B_{1} X_{t-1}+B_{2} X_{t-2}+B_{3} X_{t-3}+B_{4} X_{t-4}+v_{t}, \quad E v_{t} v_{t}^{\prime}=\Omega
$$

## Deriving Structural MA from VAR

- OLS regressions on bivariate VAR: $B(L) X_{t}=v_{t}$

$$
X_{t}=B_{1} X_{t-1}+B_{2} X_{t-2}+B_{3} X_{t-3}+B_{4} X_{t-4}+v_{t}, \quad E v_{t} v_{t}^{\prime}=\Omega
$$

- Invert to get MA: $X_{t}=B(L)^{-1} v_{t}=C(L) v_{t}$

$$
X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots
$$

with $C_{j}=B_{1} C_{j-1}+B_{2} C_{j-2}+\ldots+B_{j}, \quad j=1,2, \ldots$

Identifying Assumptions

- Work from $X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots, E v_{t} v_{t}^{\prime}=\Omega$


## Identifying Assumptions

- Work from $X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots, E v_{t} v_{t}^{\prime}=\Omega$
- Structural MA for $\epsilon=$ ['technology shock', 'demand shock']'

$$
X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma
$$

with $A_{0} \epsilon_{t}=v_{t}, A_{j}=C_{j} A_{0}, A_{0} \Sigma A_{0}^{\prime}=\Omega$

- Work from $X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots, E v_{t} v_{t}^{\prime}=\Omega$
- Structural MA for $\epsilon=$ ['technology shock', 'demand shock']'

$$
\begin{aligned}
& \quad X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma \\
& \text { with } A_{0} \epsilon_{t}=v_{t}, A_{j}=C_{j} A_{0}, A_{0} \Sigma A_{0}^{\prime}=\Omega
\end{aligned}
$$

- Identifying assumptions determine 7 parameters in $A_{0}, \Sigma$
- Structural shocks $\epsilon$ are orthogonal, $\Sigma=I$
- Demand shocks have no long-run effect on labor productivity


## Identifying Assumptions

- Work from $X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots, E v_{t} v_{t}^{\prime}=\Omega$
- Structural MA for $\epsilon=$ ['technology shock', 'demand shock']'

$$
\begin{aligned}
& \quad X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} \epsilon_{t-2}+\ldots, E \epsilon_{t} \epsilon_{t}^{\prime}=\Sigma \\
& \text { with } A_{0} \epsilon_{t}=v_{t}, A_{j}=C_{j} A_{0}, A_{0} \Sigma A_{0}^{\prime}=\Omega
\end{aligned}
$$

- Identifying assumptions determine 7 parameters in $A_{0}, \Sigma$
- Structural shocks $\epsilon$ are orthogonal, $\Sigma=I$
- Demand shocks have no long-run effect on labor productivity
$\Rightarrow 7$ equations $\left(A_{0} \Sigma A_{0}^{\prime}=\Omega, \Sigma=I, \sum_{j} A_{j}(1,2)=0\right)$


## Use Growth Model Satisfying 3 Key SVAR Assumptions

- Only 2 shocks ("technology," "demand")
- Shocks are orthogonal
- Technology shock has unit root, demand shock does not

This is the best case scenario for SVARs

- Technology shock is efficiency wedge $A=z^{1-\theta}$

$$
\log z_{t}=\mu_{z}+\log z_{t-1}+\eta_{z t}
$$

- "Demand" shock is labor wedge

$$
\tau_{l t}=(1-\rho) \bar{\tau}_{l}+\rho \tau_{l t-1}+\eta_{\tau t}
$$

- With 3 key SVAR assumptions imposed
- Only 2 shocks ("technology," "demand")
- Shocks orthogonal $\left(\eta_{z} \perp \eta_{\tau}\right)$
- Technology shock has unit root, demand shock does not
- Use growth model satisfying SVAR's 3 key assumptions
- Model has theoretical impulse response

$$
X_{t}=D(L) \eta_{t}
$$

- Generate many sequences of data from model
- Apply SVAR to these data to get empirical impulse response

$$
X_{t}=A(L) \epsilon_{t}
$$

- Compare model impulse responses with SVAR responses

Three Possible Problems

1. Noninvertibility when $\alpha=1$
2. Small samples (around 250 quarters)
3. Short lag length
\#3 is quantitatively most important

## The Short Lag Length Problem

- Using
- Quasi-differencing (QDSVAR) to avoid invertibility problem
- 100,000 length sample to avoid small sample problem
... still cannot uncover model's impulse response


## Theoretical and Empirical Impulse Responses



- Capital decision rule, with $\hat{k}_{t}=k_{t} / z_{t-1}$ :

$$
\log \hat{k}_{t+1}=\gamma_{k} \log \hat{k}_{t}+\gamma_{z} \eta_{z t}+\gamma_{\tau} \tau_{t}
$$

- So others, like $l_{t}$, have ARMA representation

$$
\log l_{t}=\gamma_{k} \log l_{t-1}+\phi_{z}\left(1-\kappa_{z} L\right) \eta_{z t}+\phi_{\tau}\left(1-\kappa_{\tau} L\right) \tau_{t}
$$

- What does the AR representation, $B(L) X_{t}=v_{t}$, look like?
- Proposition: Model has VAR coefficients $B_{j}$ such that

$$
B_{j}=M B_{j-1}, \quad j \geq 2,
$$

where $M$ has eigenvalues equal to $\alpha$ (the differencing parameter) and

$$
\left(\frac{\gamma_{k}-\gamma_{l} \phi_{k} / \phi_{l}-\theta}{1-\theta}\right)
$$

$\gamma_{k}, \gamma_{l}$ are coefficients in the capital decision rule $\phi_{k}, \phi_{l}$ are coefficients in the labor decision rule

- Eigenvalues of $M$ are $\alpha$ and .97 for the baseline parameters


## What Happens with Two Few Lags

- From SVAR procedure, want to recover model's:
- Variance-covariance matrix $\Omega_{m}$
- Sum of MA coefficients $\bar{C}_{m}$
- Example: Run VAR with 1 Lag and see what SVAR recovers
- Variance-covariance matrix (with $V(X)=E X X^{\prime}$ ):

$$
\Omega=\Omega_{m}+M\left(\Omega_{m}-\Omega_{m} V(X)^{-1} \Omega_{m}\right) M^{\prime}
$$

- (Inverse of) sum of MA coefficients:

$$
\bar{C}^{-1}=\bar{C}_{m}^{-1}+M(I-M)^{-1} C_{m, 1}+M\left(\Omega_{m}-V(X)\right) V(X)^{-1}
$$

Notice that $M$ is important factor in garbled terms!


## Recap of Lecture I

- BCA is a promising alternative to SVARs
- Statistical methods must be guided by theory
- Empirical "facts" may indeed be fictions


# II. Beyond BCA: Some Applications 

- Connecting the dots...
- Hours boomed in 1990s while wages fell
- Very puzzling since
- aggregate TFP was not above trend
- labor taxes were relatively high
$\Rightarrow$ CKM would recover large labor wedge
- This puzzled us for years
- Working on projects related to
- Stock market boom
- Financial account collapse
- Key factor for both is intangible capital...
- Working on projects related to
- Stock market boom
- Financial account collapse
- Key factor for both is intangible capital...
... which we later discovered results in a labor wedge
- Accumulated know-how from investments in
- R\&D
- Software
- Brands
- Organization know-how
that are expensed by firms

US Stock Market Boom

Stock Market Boom

- Value of US corporations doubled between 1960s and 1990s
- We asked,
- Was the stock market overvalued in 1999?
- Why did the value double?


## Was Market Overvalued in 1999?

- Many concluded it was based on earnings-price (E/P) ratio
- But, $E / P$ is not the return if firm invests in intangible capital
- Needed a way to measure intangible capital


## Three Ways to Measure Intangible Capital

- Residually: $V-q K_{T}$
- Directly with estimates of:
- Expenditures (R\&D+software+ads+org capital)
- Depreciation rates
- Indirectly with estimates of:
- Tangible capital stocks
- NIPA profits $=$ tangible rents + intangible rents
- intangible expenses
- Corporate value $=$ present value of discounted distributions $=$ value of productive capital

$$
V_{t}=\sum_{i}\{\underbrace{q_{T, i, t} K_{T, i, t+1}}_{\text {Tangible }}+\underbrace{\underbrace{\text { Plant-specific }}_{T, i, t} K_{I, i, t+1}}_{\text {Intangible }}\}+\underbrace{q_{M, t} K_{M, t+1}}_{\text {Global }},
$$

where $i$ indexes countries

- With only domestic tangible capital, theory fails miserably!


## Dramatic Rise in US Values, But $K_{T} / \mathrm{GDP} \approx 1$



## Dramatic Rise in Both US and UK



- Stock values should have been high in the 1990s and were.
- Values to GDP should have doubled between the 60 s and 90 s and did
- PE ratios should have doubled over the same period and did
- Significant changes in prices of capital ( $q$ 's)
- Preferences:

$$
\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, \ell_{t}\right) N_{t}
$$

- Technologies:

$$
\begin{array}{ll}
y_{1, t}=f^{c}\left(k_{1 T, t}, k_{1 I, t}, z_{t} n_{1, t}\right) & 1=\text { corporate, } \mathrm{T}, \mathrm{I}=\text { tangible, intangible } \\
y_{2, t}=f^{n c}\left(k_{2, t}, z_{t} n_{2, t}\right) & 2=\text { noncorporate } \\
y_{t}=F\left(y_{1, t}, y_{2, t}\right) &
\end{array}
$$

Variables:

$$
\begin{aligned}
& c=\text { consumption, } \ell=\text { leisure, } N=\text { household size } \\
& y=\text { output, } k=\text { capital, } n=\text { labor, } z=\text { technology }
\end{aligned}
$$

## The U.S. Tax System

- and the Corporation:

$$
\begin{aligned}
\max \sum_{t=0}^{\infty} p_{t} & \left\{p_{1, t} y_{1, t}-w_{t} n_{1, t}-x_{1 T, t}-x_{1 I, t}\right. \\
& -\tau_{1, t}\left[p_{1, t} y_{1, t}-w_{t} n_{1, t}-\delta_{1 T} k_{1 T, t}-\tau_{1 k, t} k_{1 T, t}-x_{1 I, t}\right] \\
& \left.-\tau_{1 k, t} k_{1 T, t}\right\}
\end{aligned}
$$

- and the Household (no capital gains case):

$$
\begin{gathered}
\sum_{t=0}^{\infty} p_{t}\left\{\left(1+\tau_{c, t}\right) c_{t}+V_{1 s, t}\left(s_{1, t+1}-s_{1, t}\right)+V_{2 s, t}\left(s_{2, t+1}-s_{2, t}\right)+V_{b, t} b_{t+1}\right\} \\
\quad \leq \sum_{t=0}^{\infty} p_{t}\left\{\left(1-\tau_{d, t}\right) d_{1, t} s_{1, t}+d_{2, t} s_{2, t}+b_{t}+\left(1-\tau_{n, t}\right) w_{t} n_{t}+\kappa_{t}\right\}
\end{gathered}
$$

$$
V_{t}=\left(1-\tau_{d t}\right)\left[k_{1 T, t+1}+\left(1-\tau_{1 t}\right) k_{1 I, t+1}\right]
$$

| $V$ | value of corporate equities |
| :--- | :--- |
| $\tau_{d}$ | tax rate on dividends |
| $k_{1 T}$ | tangible corporate capital stock |
| $\tau_{1}$ | tax rate on corporate income |
| $k_{1 I}$ | intangible corporate capital stock |

## Main Theoretical Result

$$
V_{t}=\left(1-\tau_{d t}\right)\left[k_{1 T, t+1}+\left(1-\tau_{1 t}\right) k_{1 I, t+1}\right]
$$

- Proposition.
- If $\tau_{d t}$ constant and revenues lump-sum rebated,
- then capital-output ratios independent of $\tau_{d}$

Proof. $\tau_{d}$ drops out of intertemporal condition

- Corollary. Periods of high $\tau_{d}$ have low $V /$ GDP and vice versa
- Stock values should have been high in the 1990 s and were.
- Values to GDP should have doubled between the 60 s and 90 s and did
- Values to GDP should have doubled between the 60 s and 90 s and did
- PE ratios should have doubled over the same period and did
1960-69 1998-01

Predicted fundamental values Domestic tangible capital
.56 . 84 Domestic intangible capital . 23 . 35
Foreign capital
Total Relative to GDP
Price-Earnings Ratio
13.5
27.5

## Actual values

| Corporate equities | .90 | 1.58 |
| :--- | ---: | ---: | ---: |
| Net corporate debt | $\underline{.04}$ | $\underline{.03}$ |
| Total Relative to GDP | .94 | 1.60 |
| Price-EARNINGS Ratio | 14.5 | 28.1 |

## Recap of Stock Market Study

- Value of US corporations doubled between 1960s and 1990s
- We asked,
- Was the stock market overvalued in 1999?
- Why did the value double?


## Recap of Stock Market Study

- Value of US corporations doubled between 1960s and 1990s
- We asked,
- Was the stock market overvalued in 1999?
— by 0.2 GDP (probably not statistically significant)
- Why did the value double?
- effective taxes on corporate distributions fell


## Recap of Stock Market Study

- Value of US corporations doubled between 1960s and 1990s
- We asked,
- Was the stock market overvalued in 1999?
— by 0.2 GDP (probably not statistically significant)
- Why did the value double?
- effective taxes on corporate distributions fell
- And, we found that intangible capital is important factor

Went From One Puzzle to the Next...

Our Estimate of Foreign Capital Value

- Since US multinationals do significant FDI,
- Computed estimate of value
- After the fact, we compared them

Our Estimate of Foreign Capital Value

- Since US multinationals do significant FDI,
- Computed estimate of value—not realizing BEA provides one
- After the fact, we compared them
- Since US multinationals do significant FDI,
- Computed estimate of value-not realizing BEA provides one
- After the fact, we compared them

Were the BEA and our estimates close?

- Since US multinationals do significant FDI,
- Computed estimate of value-not realizing BEA provides one
- After the fact, we compared them

Were the BEA and our estimates close? No!

## Stumbled Upon Another Puzzle

- For US subsidiaries, BEA reports
- Small value for capital abroad
- Large value for profits from abroad
$\Rightarrow$ Large return to DI of US
- For foreign subsidiaries in US, BEA reports
- Small value for capital in US
- Really small value for profits
$\Rightarrow$ Small return to DI in US


## The Return Differential

- BEA reports for 1982-2006:
- US companies earned $9.4 \%$ average returns
- Foreign companies earned $3.2 \%$ average returns
on their foreign direct investment abroad


## What Could Account for Return Differential?

- Multinationals have large intangible capital stocks
- DI profits include intangible rents $(+)$ less expenses $(-)$
- DI stocks don't include intangible capital
$\Rightarrow$ BEA returns not equal economic returns
- FDI in US is negligible until late 1970s
$\Rightarrow$ Timing of investments different in US \& ROW


## To Interpret the Data

- Need to consider nature of intangibles
- Rival versus nonrival
- Expensed at home versus abroad
- Want theory that incorporates these
- Add two types of intangible capital

1. Rival that is plant-specific $\left(K_{I}\right)$
2. Nonrival that is firm-specific $(M)$

- Add locations since technology capital nonrival ( $N$ )
- To otherwise standard multi-country DSGE model
- US drug company with employees
- Bob who develops a new drug in NC
- 50 drug reps at 50 US locations
- 2 drug reps at 2 Belgian locations
- Measuring impact of intangibles, need to keep in mind
- Some capital is nonrival, some rival
- Production opportunities vary with country size
- Profits depend on timing of investments and rents

Output of Multinationals from Country $j$ in $i$

$$
Y_{i}^{j}=A_{i} \underbrace{\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}}}_{\text {Tangibles }}
$$

## $A_{i}$ : country $i$ 's TFP

Output of Multinationals from Country $j$ in $i$

$$
Y_{i}^{j}=A_{i} \underbrace{\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}}_{\text {Tangibles }}
$$

## $A_{i}$ : country $i$ 's TFP

$$
Y_{i}^{j}=A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\text {Tangibles }} \underbrace{)^{1-\phi}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } K_{I}}
$$

$A_{i}$ : country $i$ 's TFP
$N_{i}$ : country $i$ 's measure of production locations

$$
\begin{array}{r}
Y_{i}^{j}=A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\text {Tangibles }} \underbrace{)_{\text {Add } M}^{1-\phi}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } K_{I}} \\
\text { (drug reps) } \quad(\mathrm{Bob})
\end{array}
$$

$A_{i}$ : country $i$ 's TFP
$N_{i}$ : country $i$ 's measure of production locations

$$
Y_{i}^{j}=A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\text {Tangibles }} \underbrace{)^{1-\phi} \sigma_{i}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } K_{I}}
$$

$A_{i}$ : country $i$ 's TFP
$N_{i}$ : country $i$ 's measure of production locations
$\sigma_{i}$ : country $i$ 's degree of openness to FDI

$$
\begin{aligned}
Y_{i}^{j} & =A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\text {Tangibles }} \underbrace{)^{1-\phi} \sigma_{i}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } K_{I}} \\
\hat{A}_{i}^{j} & =Y_{i}^{j} /\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}}\right) \\
& =A_{i} \sigma_{i}\left(K_{I, i}^{j} / L_{i}^{j}\right)^{\alpha_{I}(1-\phi)}\left(N_{i} M^{j}\right)^{\phi}
\end{aligned}
$$

$A_{i}$ : country $i$ 's TFP
$N_{i}$ : country $i$ 's measure of production locations
$\sigma_{i}$ : country $i$ 's degree of openness to FDI
$\hat{A}_{i}^{j}$ : multinational $j$ 's measured TFP in $i$

$$
\begin{aligned}
& \begin{aligned}
Y_{i}^{j} & =A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\equiv Z_{i}^{j}} \underbrace{)^{1-\phi} \sigma_{i}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } M} \\
& \hat{A}_{i}^{j}
\end{aligned}=Y_{i}^{j} /\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}}\right) \\
& \\
& =A_{i} \sigma_{i}\left(K_{I, i}^{j} / L_{i}^{j}\right)^{\alpha_{I}(1-\phi)}\left(N_{i} M^{j}\right)^{\phi} \\
& A_{i}: \text { country } i \text { 's TFP } \\
& N_{i}: \text { country } i \text { 's measure of production locations } \\
& \sigma_{i}: \text { country } i \text { 's degree of openness to FDI } \\
& \hat{A}_{i}^{j}: \text { multinational j's measured TFP in } i
\end{aligned}
$$

$$
\begin{aligned}
Y_{i}^{j} & =A_{i} \underbrace{\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}-\alpha_{I}}\left(K_{I, i}^{j}\right)^{\alpha_{I}}\right.}_{\equiv Z_{i}^{j}} \underbrace{)^{1-\phi} \sigma_{i}\left(N_{i} M^{j}\right)^{\phi}}_{\text {Add } M} \\
\hat{A}_{i}^{j} & =Y_{i}^{j} /\left(\left(K_{T, i}^{j}\right)^{\alpha_{T}}\left(L_{i}^{j}\right)^{1-\alpha_{T}}\right) \\
& =A_{i} \sigma_{i}\left(K_{I, i}^{j} / L_{i}^{j}\right)^{\alpha_{I}(1-\phi)}\left(N_{i} M^{j}\right)^{\phi}
\end{aligned}
$$

Next, aggregate over output of all multinationals $j$

New Aggregate Production Function

$$
Y_{i t}=A_{i t} N_{i t}^{\phi}\left(M_{t}^{i}+\sigma_{i t}^{\frac{1}{\phi}} \sum_{j \neq i} M_{t}^{j}\right)^{\phi} Z_{i t}^{1-\phi}
$$

- Key results:
- Output per effective person increasing in size
- Greater openness $\left(\sigma_{i t}\right)$ yields intangible gains

Note: Size $\equiv A_{i}^{\frac{1}{1-\left(\alpha_{T}+\alpha_{I}\right)(1-\phi)}} N_{i}$

## Use theory to Construct BEA Return on FDI

- Think of $d=$ Dell, $f=$ France

$$
\begin{aligned}
r_{\mathrm{FDI}, t} & =\left(1-\tau_{p, f t}\right)\left(Y_{f t}^{d}-W_{f t} L_{f t}^{d}-\delta_{T} K_{T, f t}^{d}-X_{I, f t}^{d}\right) / K_{T, f t}^{d} \\
& =r_{t}+\underbrace{\left(1-\tau_{p, f t}\right)\left[\phi+(1-\phi) \alpha_{I}\right] \frac{Y_{f t}^{d}}{K_{T, f t}^{d}}}_{\text {intangible rents }}-\underbrace{\left(1-\tau_{p, f t}\right) \frac{X_{I, f t}^{d}}{K_{T, f t}^{d}}}_{\text {expenses }}
\end{aligned}
$$

where $r_{t}$ is actual return on all types of capital

## What We Find

- Use model where each investment earns $4.6 \%$ on average
- We find average $B E A$ returns on DI, 1982-2006:

$$
\begin{aligned}
& \circ \text { of } U S=7.1 \% \ldots \text { BEA reports } 9.4 \% \\
& \circ \text { in } U S=3.1 \% \ldots \text { BEA reports } 3.2 \% \\
& \Rightarrow \text { Mismeasurement accounts for over } 60 \% \text { of return gap }
\end{aligned}
$$

- In studying stock market boom, needed estimate of foreign capital
- Our estimates turned out to be much larger than BEA's
- BEA returns are not equal to economic returns
- Timing of investments different in US and ROW
- In studying stock market boom, needed estimate of foreign capital
- Our estimates turned out to be much larger than BEA's
- BEA returns are not equal to economic returns
- Timing of investments different in US and ROW
- Working on these projects gave us an idea for the 1990s boom

Intangible Capital and the Puzzling 1990s Boom


Connecting the dots...

- Previous work points to issue of mismeasurement
- 1990s was a tech boom
- Yet, TFP was not growing fast
- Why? because of large intangible investments in
- Sweat equity
- Corporate R\&D


## Modeling the Tech Boom

- Two key factors:
- Intangible capital that is expensed
- Nonneutral technology change w.r.t. its production
- Idea: model tech boom as boom in intangible production


## Modeling the Tech Boom

- Two key factors:
- Intangible capital that is expensed
- Nonneutral technology change w.r.t. its production
- Idea: model tech boom as boom in intangible production
$\Rightarrow$ Increased hours in intangible production


## Modeling the Tech Boom

- Two key factors:
- Intangible capital that is expensed
- Nonneutral technology change w.r.t. its production
- Idea: model tech boom as boom in intangible production
$\Rightarrow$ Increased hours in intangible production
Increased intangible investment


## Modeling the Tech Boom

- Two key factors:
- Intangible capital that is expensed
- Nonneutral technology change w.r.t. its production
- Idea: model tech boom as boom in intangible production
$\Rightarrow$ Increased hours in intangible production
Increased intangible investment
Understated growth in measured productivity
- True productivity

$$
\begin{aligned}
\frac{y_{t}+q_{t} x_{I t}}{h_{y t}+h_{x t}} & \neq \frac{y_{t}}{h_{y t}+h_{x t}} \\
& =\text { Measured productivity }
\end{aligned}
$$

where

$$
\begin{aligned}
y_{t} & =\text { output of final goods and services } \\
q_{t} x_{I t} & =\text { output of intangible production } \\
h_{y t} & =\text { hours in production of final G\&S } \\
h_{x t} & =\text { hours in production of new intangibles }
\end{aligned}
$$

## BEA National Accounts (Before 2013)

| NIPA INCOME | NIPA PRODUCT |
| :--- | :--- |
| Capital consumption | Personal consumption |
| Taxes on production | Government consumption |
| Compensation less sweat | Government investment |
| Profits less expensed | Private tangible investment |
| Net interest | Net exports |

## TOTAL INCOME

Capital consumption
Taxes on production
Compensation less sweat
Profits less expensed
Net interest
Capital gains

TOTAL PRODUCT

Personal consumption
Government consumption
Government investment
Private tangible investment
Net exports
Intangible investment

## TOTAL INCOME

Capital consumption
Taxes on production
Compensation
Profits

Net interest

TOTAL PRODUCT

Personal consumption
Government consumption
Government investment
Private tangible investment
Net exports
Intangible investment

## Evidence of the Mechanism

- Macro
- Hours boomed, but compensation per hour fell
- GDP rose, but corporate profits fell
- Capital gains high at end of 1990 s
- Micro
- Industry R\&D boomed
- IPO gross proceeds boomed
- Average hours boomed selectively

| Hours Per Noninstitutional Population Aged 16-64 |  |  |
| :---: | :---: | :---: |
|  | Total <br> $(1992=100)$ | The Educated in <br> Select Occupations |
| 1992 | 100.0 | 10.3 |
| 2000 | 106.5 | 13.3 |
| \% Chg. | 6.5 | 30.0 |

$\dagger$ Managerial, computational, and financial occupations

- Household/Business owners solve

$$
\max E \sum_{t=0}^{\infty} \beta^{t}\left[\log c_{t}+\psi \log \left(1-h_{t}\right)\right] N_{t}
$$

subject to

$$
\begin{aligned}
& c_{t}+x_{T t}+ q_{t} x_{I t}=r_{T t} k_{T t}+r_{I t} k_{I t}+w_{t} h_{t} \\
& \quad-\operatorname{taxes}_{t}+\text { transfers }_{t}+\text { nonbusiness }_{t} \\
& k_{T, t+1}=\left(1-\delta_{T}\right) k_{T t}+x_{T t} \\
& k_{I, t+1}=\left(1-\delta_{I}\right) k_{I t}+x_{I t}
\end{aligned}
$$

where subscript $T / I$ denotes tangible/intangible

- Technology 1 - producing goods and services

$$
y_{b}=A^{1} F\left(k_{T}^{1}, k_{I}, h^{1}\right)
$$

- Technology 2 - producing intangible capital

$$
x_{I}=A^{2} G\left(k_{T}^{2}, k_{I}, h^{2}\right)
$$

Total intangible stock used in two activities

- Expensed: capital owners finance $\chi$ with reduced profits
- Sweat: worker owners finance $1-\chi$ with reduced wages

Choice of $\chi$ has tax implications

Hypothesis for the 1990s

- Technological change was nonneutral: $A_{t}^{2} / A_{t}^{1} \uparrow$

Hypothesis for the 1990s

- Technological change was nonneutral: $A_{t}^{2} / A_{t}^{1} \uparrow$
$\Rightarrow$ More hours to intangible sector: $h_{t}^{2} / h_{t}^{1} \uparrow$
- Technological change was nonneutral: $A_{t}^{2} / A_{t}^{1} \uparrow$
$\Rightarrow$ More hours to intangible sector: $h_{t}^{2} / h_{t}^{1} \uparrow$
$\Rightarrow$ Measured productivity $p_{t}^{\text {NIPA }}$ falls

$$
p_{t}^{N I P A} \propto \frac{y_{b t}}{h_{t}^{1}+h_{t}^{2}}
$$

- Technological change was nonneutral: $A_{t}^{2} / A_{t}^{1} \uparrow$
$\Rightarrow$ More hours to intangible sector: $h_{t}^{2} / h_{t}^{1} \uparrow$
$\Rightarrow$ Measured productivity $p_{t}^{\text {NIPA }}$ falls

While true productivity $p_{t}$ rises

$$
p_{t} \propto \frac{y_{b t}}{h_{t}^{1}}=\frac{y_{b t}+q_{t} x_{I t}}{h_{t}^{1}+h_{t}^{2}}
$$

- CKM's labor wedge, $1-\tau_{l t}$ :

$$
\begin{aligned}
1-\tau_{l t} & =\psi \frac{1+\tau_{c t}}{1-\tau_{h t}} \cdot \frac{c_{t}}{y_{b t}} \cdot \frac{h_{t}}{1-h_{t}} \\
& =\psi \frac{1+\tau_{c t}}{1-\tau_{h t}} \cdot \frac{c_{t}}{y_{b t}} \cdot \frac{h_{t}^{1}}{1-h_{t}} \cdot \frac{h_{t}}{h_{t}^{1}} \\
& =1+\frac{h_{t}^{2}}{h_{t}^{1}} \\
& =1+\frac{q_{t} x_{I t}}{y_{b t}}
\end{aligned}
$$

which is rising over the 1990s

## Quantitative Predictions

## Identifying TFPs

- Need inputs and outputs of production
- Split of hours and tangible capital in 2 activities
- Magnitude of intangible investment and capital


## Identifying TFPs

- Need inputs and outputs of production
- Split of hours and tangible capital in 2 activities
- Magnitude of intangible investment and capital
$\Leftarrow$ Determined by factor price equalization
- Need inputs and outputs of production
- Split of hours and tangible capital in 2 activities
- Magnitude of intangible investment and capital
$\Leftarrow$ Determined by factor price equalization
- Only requires observations on NIPA products and CPS hours


## Compute Equilibrium Paths

- Computed both
- Perfect foresight paths
- Stochastic simulations

Results were insensitive to choice

Next, reconsider the prediction of per capita hours


Downturn of 2008-2009

Downturn of 2008-2009

- Many who observed:
- GDP and hours fall significantly
- Labor productivity rise
- Concluded that this time is different

Downturn of 2008-2009

- Many who observed:
- Rising credit spreads
- Plummeting asset values
- Concluded financial market disruptions responsible
- 2008-2009 is "flip side" of 1990s:
- GDP and hours depressed, but booming in '90s
- Labor productivity high, but low in '90s
- In earlier work, found puzzling if abstract from
- Intangible investment that is expensed
- Nonneutral technology change w.r.t. its production


## Application of Theory to 2000s

- Apply "off-the-shelf" model from 1990s study
- Feed in paths for TFPs and tax rates
- Abstract from financial and labor market disruptions
- Main findings:
- Productivity growth slow-down big part of story
- Aggregate observations in conformity with theory


## Application of Theory to 2000s

- Apply "off-the-shelf" model from 1990s study
- Feed in paths for TFPs and tax rates
- Abstract from financial and labor market disruptions
- Main findings:
- Productivity growth slow-down big part of story
- Aggregate observations in conformity with theory

Is there any empirical evidence?

## BEA Comprehensive Revision 2013

- Intellectual property products investment included:
- R\&D
- Artistic originals
- Software (first introduced in 1999)
- While much investment still missing, category is large...
- Private fixed nonresidential investment, 2012

22\% Structures<br>45\% Equipment<br>33\% Intellectual property

- Also have data for detailed industrial sectors


## Computer \& Electronic Products



## InFORMATION



Other Microevidence

- SEC requires $10-\mathrm{K}$ reports from public companies
- Have company info on
- R\&D expenses
- Advertising expenses
- Data show simultaneous large declines in 2008-2009

Top 500 Advertisers (COMPUSTAT)

| Statistic | \% of Domestic <br> company total | \% Decline in <br> 2008-2009 |
| :--- | :---: | :---: |
| Ad expenses | 96.5 | -10.8 |
| R\&D expenses | 46.6 | -16.2 |
| PP\&E expenses | 27.5 | -18.2 |
| Employees | 50.2 | -2.2 |
| Sales | 38.6 | -3.5 |

Top 500 R\&D Spenders (COMPUSTAT)

| Statistic | \% of Domestic <br> company total | \% Decline in <br> 2008-2009 |
| :--- | :---: | :---: |
| Ad expenses | 44.7 | -19.6 |
| R\&D expenses | 92.3 | -11.9 |
| PP\&E expenses | 25.9 | -21.7 |
| Employees | 24.4 | -4.4 |
| Sales | 34.2 | -15.3 |

## Strong I-O Linkages

- Use BEA's 2007 input-output benchmark
- Find $66 \%$ of output has intermediate uses from
- Manufacturing (NAICS 31-33)
- Information (NAICS 51)
- Professional and business services (NAICS 54-56)
- And to sectors that do much less intangible investment
- Intangible investments are:
- Expensed for tax purposes
- Only partly measured in GDP
- Estimated to be as large as tangibles
- Correlated with tangibles
- Picked up in typical productivity measures
- And, in our view, worthy of further investigation

Future RESEARCH NEEDED

- Need full exploration of microevidence for 2008-2009
- Main challenge is using theory to measure the unmeasured

Not everything that counts can be counted, and not everything that can be counted counts.

- Albert Einstein
III. Back to methods: Nonlinearities and large state spaces
- Marimon, R. and A. Scott

Computational Methods for the Study of Dynamic Economies
Oxford University Press, 1999
"Application of weighted residual methods to dynamic economic models"

- Finite element method has proven useful for:
- Problems with nonlinearities (kinks, discontinuities)
- Problems with large state spaces (exploits sparseness)
- Marimon, R. and A. Scott

Computational Methods for the Study of Dynamic Economies
Oxford University Press, 1999
"Application of weighted residual methods to dynamic economic models"

- Finite element method has proven useful for:
- Problems with nonlinearities (kinks, discontinuities)
- Problems with large state spaces (exploits sparseness)

Today, will describe method in context of Aiyagari \& McGrattan

## Aiyagari-McGrattan (1998)

- Study economies with
- Large number of infinitely-lived households
- Borrowing constraints
- Precautionary savings motives
$\Rightarrow$ Savings decision functions have kinks
Distribution of asset holdings have discontinuities


## Aiyagari-McGrattan (1998)

- Consumer problem:

$$
\begin{aligned}
& \max _{\left\{\tilde{c}_{t}, \tilde{a}_{t+1}, \ell_{t}\right\}} E\left[\sum_{t=0}^{\infty}\left(\beta(1+g)^{\eta(1-\mu)}\right)^{t}\left(\tilde{c}_{t}^{\eta} \ell_{t}^{1-\eta}\right)^{1-\mu} /(1-\mu) \mid \tilde{a}_{0}, e_{0}\right] \\
& \text { s.t. } \tilde{c}_{t} \\
& \tilde{a}_{t} \geq(1+g) \tilde{a}_{t+1} \leq(1+\bar{r}) \tilde{a}_{t}+\bar{w} e_{t}\left(1-\ell_{t}\right)+\chi \\
& \quad \ell_{t} \leq 1 \\
& \quad e_{t}: \text { Markov chain }
\end{aligned}
$$

where after-tax rates $\bar{w}, \bar{r}$ and transfers $\chi$ given

## Aiyagari-McGrattan (1998)

- Consumer problem:

$$
\begin{aligned}
& \max _{\left\{\tilde{c}_{t}, \tilde{a}_{t+1}, \ell_{t}\right\}} E\left[\sum_{t=0}^{\infty}\left(\beta(1+g)^{\eta(1-\mu)}\right)^{t}\left(\tilde{c}_{t}^{\eta} \ell_{t}^{1-\eta}\right)^{1-\mu} /(1-\mu) \mid \tilde{a}_{0}, e_{0}\right] \\
& \text { s.t. } \tilde{c}_{t} \\
& \tilde{a}_{t} \geq(1+g) \tilde{a}_{t+1} \leq(1+\bar{r}) \tilde{a}_{t}+\bar{w} e_{t}\left(1-\ell_{t}\right)+\chi \\
& \quad \ell_{t} \leq 1 \\
& e_{t}
\end{aligned}
$$

where after-tax rates $\bar{w}, \bar{r}$ and transfers $\chi$ given

Restrictions on $a_{t}, e_{t} \Rightarrow$ kinks, discontinuities

## LET'S GET RID OF CONSTRAINTS

- Modified objective $\left(\tilde{\beta}=\beta(1+g)^{\eta(1-\mu)}\right)$ :

$$
E\left[\left.\sum_{t=0}^{\infty} \tilde{\beta}^{t}\left\{\frac{\left(\tilde{c}_{t}^{\eta} \ell_{t}^{1-\eta}\right)^{1-\mu}}{1-\mu}+\frac{\zeta}{3}\left(\min \left(\tilde{a}_{t}, 0\right)^{3}+\min \left(1-\ell_{t}, 0\right)^{3}\right)\right\} \right\rvert\, \tilde{a}_{0}, e_{0}\right]
$$

- Solve a sequence of problems with $\zeta=1,10,100$, etc.
- Want: functions $c(x, i), \ell(x, i), \alpha(x, i)=\tilde{a}^{\prime}$ that solve FOCs

Really only need to find $\alpha(x, i)$

- $c(x, i)$ from budget constraint given $\alpha(x, i)$
- $\ell(x, i)$ from intratemporal condition given $\alpha(x, i)$

Note: in case of $\ell$ need a robust Newton routine

## Boils down TO...

- Find $\alpha(x, i)$ to set $R(x, i ; \alpha)=0$ :

$$
\begin{aligned}
R(x, i ; \alpha)= & \eta(1+g) c\left(\ell^{*}(x, i ; \alpha)\right)^{\eta(1-\mu)-1} \ell^{*}(x, i ; \alpha)^{(1-\eta)(1-\mu)} \\
& \quad-\beta(1+g)^{\eta(1-\mu)}\left\{\sum_{j} \pi_{i, j} \eta(1+\bar{r}) c\left(\ell^{*}(\alpha(x, i), j ; \alpha)\right)^{\eta(1-\mu)-1}\right. \\
& \left.\cdot \ell^{*}(\alpha(x, i), j ; \alpha)^{(1-\eta)(1-\mu)}+\zeta \min (\alpha(x, i), 0)^{2}\right\}
\end{aligned}
$$

where $c^{*}(x, i ; \alpha), \ell^{*}(x, i ; \alpha)$ from static FOCs

- Find $\alpha^{h}(x, i)$ to set $R\left(x, i ; \alpha^{h}\right) \approx 0$
- Steps (for Galerkin variant with linear bases):

1. Partition $\left[0, x_{\max }\right]$, with subintervals called elements
2. Define $\alpha^{h}$ on $\left[x_{e}, x_{e+1}\right]$ :

$$
\begin{aligned}
\alpha^{h}(x, i) & =\psi_{e}^{i} N_{e}(x)+\psi_{e+1}^{i} N_{e+1}(x) \\
N_{e}(x) & =\frac{x_{e+1}-x}{x_{e+1}-x_{e}}, \quad N_{e+1}(x)=\frac{x-x_{e}}{x_{e+1}-x_{e}}
\end{aligned}
$$

3. Find $\psi_{e}^{i}$ 's to satisfy

$$
F(\vec{\psi})=\int R\left(x, i ; \alpha^{h}\right) N_{e}(x) d x=0, i=1, \ldots, m, e=1, \ldots n
$$

$\Rightarrow$ Solve $m n$ nonlinear equations in $m n$ unknowns

Practicalities

- It helps to...
- Adapt the grid to optimally partition the grid
- Compute analytical derivatives $d F / d \psi_{e}^{i}$ to get speed
- Exploit sparseness of jacobian matrix


## Computing the Invariant Distribution

- Want equilibrium prices $r, w$
- Need $H(x, i)=\operatorname{Pr}\left(x_{t}<x \mid e_{t}=e(i)\right)$ which solves:

$$
H(x, i)=\sum_{j=1}^{m} \pi_{j, i} H\left(\alpha^{-1}(x, j), j\right) I(x \geq \alpha(0, j)), I(x>y)=1 \text { if } x>y
$$

- Can again apply FEM to this


## Computing the Invariant Distribution

- Want equilibrium prices $r, w$
- Need $H(x, i)=\operatorname{Pr}\left(x_{t}<x \mid e_{t}=e(i)\right)$ which solves:

$$
H(x, i)=\sum_{j=1}^{m} \pi_{j, i} H\left(\alpha^{-1}(x, j), j\right) I(x \geq \alpha(0, j)), I(x>y)=1 \text { if } x>y
$$

- Can again apply FEM to this
- How well does it work given the kinks and discontinuities?


## Test Cases with Known Solutions

- For test of $\alpha(x, i)$ computation, assume labor inelastic and $e_{t}=1$
- For test of $H(x, i)$ computation,
- Make up a tractible $\alpha(x, i)$ that
- Generates known invariant distribution

Testing $\alpha(x, i)$

- Consumer problem:

$$
\begin{gathered}
\max _{\left\{c_{t}, a_{t+1}\right\}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { subject to } \quad c_{t}+a_{t+1}=(1+r) a_{t}+w
\end{gathered}
$$

- Solution is piecwise linear and analytically computed

Testing $\alpha(x, i)$-Grid known


Testing $\alpha(x, i)$-Grid known


Zoomed in, Boundary conditions not imposed

Testing $\alpha(x, i)$-Grid known


Zoomed in, Boundary conditions imposed

TESting $\alpha(x, i)$-GRID Not KNOWN


Zoomed in, Boundary conditions not imposed

TESting $\alpha(x, i)$-GRID Not known


Zoomed in, Boundary conditions not imposed, Adapt grid

Testing $\alpha(x, i)$-GRID not known


Zoomed in, Boundary conditions imposed, Adapt grid

Testing $H(x, i)$

- Suppose $\alpha(x, i)$ is:

$$
\alpha(x, i)= \begin{cases}\max (0,-0.25+x), & \text { if } i=1 \\ 0.5+0.5 x, & \text { if } i=2\end{cases}
$$

with $\pi_{1,1}=\pi_{2,2}=0.8$.

- Then, it is easy to analytically derive $H$

Testing $H(x, i)$ —Evenly spaced grid


Have $n=13$ elements

Testing $H(x, i)$ —Evenly spaced grid


Add more elements ( $n=25$ )

Testing $H(x, i)$ —Evenly spaced grid


Add more elements ( $n=49$ )

Testing $H(x, i)$ —Evenly spaced grid


Add more elements ( $n=97$ )

Testing $H(x, i)$ — Not evenly spaced grid


Adapted grid ( $n=73$ )

Future work needed

- Want to solve problems with time-varying distributions $H_{t}$
- Big change since EUI Lectures in 1996: parallel processing
- Most problems can be parallelized
- OpenMPI simple to use with few changes to existing codes


## Recap of Lecture III

- Since 1996, I have
- Applied FEM to many interesting problems
- Learned to parallelize most of my codes
- But, there is still much to learn!

