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Introduction

• Main claim of structural VAR literature:

◦ Given minimal set of identifying assumptions,

can accurately estimate impulse responses of economic shocks

regardless of the other details of the economy

• We provide class of counterexamples to main claim



Motivation

• RBC theory used to study business cycles, stock market, labor market...

• Want to investigate evidence ruling out RBC theory

The original technology-driven real business cycle hypothesis

does appear to be dead. — Francis and Ramey

Overall, the [SVAR] evidence seems to be clearly at odds with

the predictions of standard RBC models... — Gali

• Want to investigate evidence ruling in RBC theory

We find that a permanent shock to technology has qualitative

consequences that a student of real business cycles would

anticipate. — Christiano et al.



Test of SVARs in the Laboratory



Test of SVARs in the Laboratory

• Use standard RBC model satisfying key identifying assumptions of SVARs

• Focus on response of hours to technology shock

• Derive theoretical impulse response from model

• Generate data from the model

• Calculate empirical impulse response identified by SVAR procedure

• Test: Are they close?



Main Findings

• SVAR procedure does not robustly uncover impulse responses

• Works better:

◦ the lower is the capital share

◦ the larger is contribution of technology shocks to fluctuations

• Works poorly for large class of parameters, including estimated ones



Main Findings

• SVAR procedure does not robustly uncover impulse responses

• Works better:

◦ the lower is the capital share

◦ the larger is contribution of technology shocks to fluctuations

• Works poorly for large class of parameters, including estimated ones

• Conjectured solution:

◦ adding variables helps

◦ we find it does not help in general



What is the Root of the Problem?

• An auxiliary assumption: small number of lags in VAR is sufficient

• How do we prove this?

◦ Begin by abstracting from small sample issues

◦ Derive population moments when number of lags in VAR small

• Small sample issues

◦ Small sample bias is small

◦ Confidence bands often so wide that SVAR is uninformative



The Deep Root of the Problem

• Not computing same statistics in model and data

• Three candidates to compare:

1. Theoretical RBC Model

2. SVAR applied to RBC Model

3. SVAR applied to US data

• SVAR “compares” 1 and 3 (apples to oranges)

• Should compare 2 and 3 (apples to apples)



Related Literature

• Economic model’s MA noninvertible (Hansen and Sargent)

• Shock processes often misspecified (Cooley and Dwyer)

• Specification-mining drive results (Uhlig)

• Inference in ∞-dimensional space hard (Sims, Faust, Leeper)

• Over-differencing problems (Christiano, Eichenbaum, and Vigfusson)

• Small samples a practical problem (Erceg, Guerrier, Gust)



Outline

• Explain SVAR procedure

• Show SVAR procedure leads to large errors

• Derive errors analytically and discuss special cases

• Show adding more variables does not help

• Show basic insights hold up in small sample

• Put small sample results in context of literature
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What You Get from SVAR Procedure

• Structural MA for ε=[‘technology shock’, ‘demand shock’]′

Xt = A0εt +A1εt−1 + A2εt−2 + . . . , Eεtε
′

t = Σ



What You Get from SVAR Procedure

• Structural MA for ε=[‘technology shock’, ‘demand shock’]′

Xt = A0εt +A1εt−1 + A2εt−2 + . . . , Eεtε
′

t = Σ

where Xt = [∆ Log labor productivity, (1 − αL) Log hours]′

• Specifications with different α’s:

◦ DSVAR: α = 1

◦ LSVAR: α = 0

◦ QDSVAR: α ∈ (0, 1)



What You Get from SVAR Procedure

• Structural MA for ε=[‘technology shock’, ‘demand shock’]′

Xt = A0εt +A1εt−1 + A2εt−2 + . . . , Eεtε
′

t = Σ

where Xt = [∆ Log labor productivity, (1 − αL) Log hours]′

• Identifying assumptions:

◦ technology and demand shocks uncorrelated (Σ = I)

◦ demand shock has no long-run effect on productivity



Impulse Responses and Long-Run Restriction

• Impulse response from structural MA:

Blip εd1 for response of productivity to demand

log(y1/l1) − log(y0/l0) = A0(1, 2)

log(y2/l2) − log(y0/l0) = A0(1, 2) + A1(1, 2)
...

log(yt/lt) − log(y0/l0) = A0(1, 2) +A1(1, 2) + . . .+At(1, 2)



Impulse Responses and Long-Run Restriction

• Impulse response from structural MA:

Blip εd1 for response of productivity to demand

log(y1/l1) − log(y0/l0) = A0(1, 2)

log(y2/l2) − log(y0/l0) = A0(1, 2) + A1(1, 2)
...

log(yt/lt) − log(y0/l0) = A0(1, 2) +A1(1, 2) + . . .+At(1, 2)

• Long-run restriction:

Demand shock has no long run effect on level of productivity

∑

∞

j=0
Aj(1, 2) = 0



Deriving Structural MA from VAR

• OLS regressions on bivariate VAR: B(L)Xt = vt

Xt = B1Xt−1 +B2Xt−2 +B3Xt−3 +B4Xt−4 + vt, Evtv
′

t = Ω



Deriving Structural MA from VAR

• OLS regressions on bivariate VAR: B(L)Xt = vt

Xt = B1Xt−1 +B2Xt−2 +B3Xt−3 +B4Xt−4 + vt, Evtv
′

t = Ω

• Invert to get MA: Xt = B(L)−1vt = C(L)vt

Xt = vt + C1vt−1 + C2vt−2 + . . .



Identifying Assumptions

• Work from MA: Xt = vt + C1vt−1 + C2vt−2 + . . . , Evtv
′

t = Ω

• Structural MA for ε=[‘technology shock’, ‘demand shock’]′

Xt = A0εt +A1εt−1 + A2εt−2 + . . . , Eεtε
′

t = Σ

with A0εt = vt, Aj = CjA0, A0ΣA
′

0 = Ω
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′

t = Σ

with A0εt = vt, Aj = CjA0, A0ΣA
′

0 = Ω

• Identifying assumptions determine parameters in A0,Σ

◦ Structural shocks ε are orthogonal, Σ = I

◦ Demand shocks have no long-run effect on labor productivity



Identifying Assumptions

• Work from MA: Xt = vt + C1vt−1 + C2vt−2 + . . . , Evtv
′

t = Ω

• Structural MA for ε=[‘technology shock’, ‘demand shock’]′

Xt = A0εt +A1εt−1 + A2εt−2 + . . . , Eεtε
′

t = Σ

with A0εt = vt, Aj = CjA0, A0ΣA
′

0 = Ω

• Identifying assumptions determine parameters in A0,Σ

◦ Structural shocks ε are orthogonal, Σ = I

◦ Demand shocks have no long-run effect on labor productivity

⇒ 4 equations, 4 parameters in A0 (A0A
′

0 = Ω,
∑

j Aj(1, 2) = 0)
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Use Model Satisfying Key SVAR Assumptions

• Shocks are orthogonal

• Technology shock has long-run effect on y/l, demand shock does not



Use Model Satisfying Key SVAR Assumptions

• Shocks are orthogonal

• Technology shock has long-run effect on y/l, demand shock does not

This is a best case scenario for SVARs



RBC Model

• Households choose c, x, l to solve:

max E0

∞
∑

t=0

βtU(ct, lt)

s.t. ct + xt = (1 − τlt)wtlt + rtkt + Tt

kt+1 = (1 − δ)kt + xt

• Technology: yt = F (kt, ztlt)

• Resource constraint: ct + xt = yt



Shocks in RBC Model

• Technology shocks

log zt = µz + log zt−1 + ηzt

• “Demand” shocks

τlt = (1 − ρl)τ̄l + ρlτlt−1 + ηlt



Shocks in RBC Model

• Technology shocks

log zt = µz + log zt−1 + ηzt

• “Demand” shocks

τlt = (1 − ρl)τ̄l + ρlτlt−1 + ηlt

• Model satisfies the key SVAR assumptions

◦ Shocks orthogonal (ηz ⊥ ηl)

◦ Technology shock has long-run effect on y/l, demand shock doesn’t



Shocks in RBC Model

• Technology shocks

log zt = µz + log zt−1 + ηzt

• “Demand” shocks

τlt = (1 − ρl)τ̄l + ρlτlt−1 + ηlt

• Model has theoretical impulse response

Xt = D(L)ηt

where Xt = [∆ log yt/lt,∆log lt]
′ or Xt = [∆ log yt/lt, log lt]

′



Model’s Functional Forms and Parameters

• Assume

◦ U(c, l) = log c+ ψ log(1 − l)

◦ F (k, zl) = kθ(zl)1−θ

• Derive general analytical results

• Since interested in robustness, when displaying quantitative results,

◦ start with MLE parameter estimates for US as baseline

◦ also show for wide regions of parameter space



Our Evaluation of SVAR Procedure

• Use RBC model satisfying SVAR’s key assumptions

• Model has theoretical impulse response

Xt = D(L)ηt



Our Evaluation of SVAR Procedure

• Use RBC model satisfying SVAR’s key assumptions

• Model has theoretical impulse response

Xt = D(L)ηt

• Derive SVAR’s empirical impulse response

Xt = A(L)εt

• Compare model impulse responses with SVAR responses
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Model Impulse Response of Hours
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Model and SVAR Impulse Responses of Hours

Quarter Following Shock
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Recap

• Used model satisfying SVAR key assumptions

• Compared SVAR responses and model responses

• SVAR procedures lead to large errors

• Now explain why



Analyze Specification Error

• Implicit assumptions of SVAR

◦ MA representation is invertible

◦ Few AR lags enough (e.g., 4)

• Violation of either leads to error

◦ Easy to get around invertibility by quasi-differencing (1−αL) log lt

◦ Hard to get around short lag length problem



The Short Lag Length Problem (QDSVAR)
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Short Lag Length Leads to Large Errors

Quarter Following Shock
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Short Lag Length Leads to Large Errors
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Short Lag Length Leads to Large Errors
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Short Lag Length Leads to Large Errors
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Short Lag Length Leads to Large Errors
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Short Lag Length Leads to Large Errors

Quarter Following Shock
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Short Lag Length Leads to Large Errors
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Short Lag Length Problem (LSVAR)
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Short Lag Length Problem (LSVAR)
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Long AR Needed Because of Capital

• Capital decision rule, with k̂t = kt/zt−1:

log k̂t+1 = γk log k̂t + γzηzt + γττlt

• So others, like lt, have ARMA representation

log lt = γk log lt−1 + φz(1 − κzL)ηzt + φτ (1 − κτL)τlt

• What does the AR representation, B(L)Xt = vt, look like?



Model Has Infinite-order AR

• Proposition 1: Model has VAR coefficients Bj such that

Bj = MBj−1, j ≥ 2,

where M has eigenvalues equal to α (the differencing parameter) and

(

γk − γlφk/φl − θ

1 − θ

)

γk, γl are coefficients in the capital decision rule

φk, φl are coefficients in the labor decision rule

• Eigenvalues of M are α and .96 for the baseline parameters



What Happens with Too Few Lags

• Recall

◦ VAR: B(L)Xt = vt, Evtv
′

t = Ω ⇒ Xt = C(L)vt

◦ Empirical impulse response: Xt = A(L)εt

• Response of hours to technology on impact:

A0(2, 1) is a function of Ω and C̄ = I + C1 + C2 + . . .



What Happens with Too Few Lags

• Theoretical and empirical impulse responses different if

◦ Ωm 6= Ω

◦ C̄m 6= C̄

• Proposition 2: If VAR has 1 lag, SVAR recovers

Ω = Ωm +M
(

Ωm − ΩmV (X)−1Ωm

)

M ′

C̄−1 = C̄−1
m +M(I −M)−1Cm,1 +M (Ωm − V (X))V (X)−1

Notice that M is important factor in garbled terms!
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SVAR Procedure in Two Special Cases

• Proposition 3: If model has

◦ no capital (θ = 0) or

◦ only one shock (σl = 0),

then SVAR uncovers model’s impulse response.

• Next, explore size of errors as we vary these parameters



Vary the Capital Share
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Vary the Stochastic Processes
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Less Consensus on Shock Processes

• Wide range of estimates for fraction of output variance due to technology

◦ McGrattan (1994): total output variance due to technology

41% with standard error 46%

◦ Eichenbaum (1991): model HP variance/data HP variance

5% to 200% for model with technology shocks only

◦ Gali-Rabanal (2004): business cycle component due to technology

LSVAR: 3% to 37%

DSVAR: 6% to 31%



Summary of the Evidence

What the data are actually telling us is that, while technology shocks

almost certainly play some role in generating the business cycle, there

is simply an enormous amount of uncertainty about just what percent

of aggregate fluctuations they actually do account for. The answer

could be 70% as Kydland and Prescott (1989) claim, but the data

contain almost no evidence against either the view that the answer

is really 5% or that the answer is 200%.

— Martin Eichenbaum, 1991, J. of Economic Dynamics and Control



Vary the Stochastic Processes
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Half-Life Error Also Large for Wide Range of Processes
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Sensitivity of SVAR Error to Estimation Procedure

• Estimation Procedures

1. Baseline: data on (y, l, x, g) in 2-shock model

2. Tiny measurement error: 1

1000
× observed variance rather than 1

100

3. Restricted observer: data on (y, l) in 2-shock model

4. Govt. consumption: data on (y, l, x, g) in 3-shock model

• Are the errors large in all cases?



Yes, the Errors Are Large for All MLE Estimates
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Recap

• Used model satisfying SVAR key assumptions

• SVAR procedures doesn’t robustly uncover model’s impulse responses

• Short lag length is the problem



� � � # � � � � � � � 
 � 
 � � � � � � � � 
 � � � � � � � � � � � � � � � � � 
 � �



Use More Theory

• Business cycle models have state space representations:

log k̂t+1 = γk log k̂t + γ′sst

st+1 = Pst +Qηt+1

with shocks st (e.g., log zt, τlt). Write as VAR:

St+1 = FSt +Gηt+1

• with the measurement equation

Xt = HSt + ωt

Xt are observations, St is the state, and ωt is measurement error

• Why not estimate this system as opposed to various VARs?



Throw in More Variables

• Conjecture: adding investment-output ratio fixes short lag problem

• We find: It does not

• Demonstrate this with 3-variable system:

◦ Add investment-output to SVAR variables

◦ Add orthogonal AR(1) for government spending or investment tax



Long AR Needed Since Model Has Infinite-order AR

• Proposition 4: Model has VAR coefficients Bj such that

Bj = MBj−1, j ≥ 2,

M has eigenvalues equal to 0, α (the differencing parameter), and

λ =
1 − δ

1 + gy

where gy is growth rate of output.

• Eigenvalue λ = .98 for our parameters



Generalization of Special Cases When Works

• Recall special cases for bivariate SVAR: no capital or one shock

• Singularity rule of thumb in general:

◦ SVAR with few lags uncovers truth if

# of singularities in decay matrix M

+ # of singularities in shock covariance Ω

≥ # of variables in VAR



Need Close to Singular Variance-Covariance
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Recap

• Short lag length leads to large errors in SVARs

• Problem not fixed easily given available data

• Adding investment-output ratio does not fix the problem

• More variables than shocks only works if shock variances negligible.
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SVAR Procedure in Small Sample

• Found large errors in population for wide region of parameter space

• What about in small sample?

◦ for RBC model, draw 1000 sequences of η of length 180

◦ use model to derive 1000 sequences for productivity and hours

◦ apply SVAR procedure to each dataset

◦ compute bootstrapped confidence bands

◦ repeat for wide region of parameter space



LSVAR Small Sample Specification Error
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Half-Life Error Also Large for Wide Range
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Half-Life Error Also Large for Wide Range
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LSVAR Extremely Sensitive to Sample Path

• Drives large confidence bands

• Leads to wildly different conclusions

• Reminiscent of the findings in the literature



LSVAR Sensitivity to Small Variations in US Measures

• Three different researchers running an LSVAR with US data:

◦ Francis and Ramey using

Business productivity and demographically adjusted hours

◦ Christiano, Eichenbaum, and Vigfusson using

Business productivity and hours

◦ Gali and Rabanal using

Nonfarm business productivity and hours

come to wildly different conclusions



LSVAR Results Not Robust
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Francis-Ramey

infer that the

data did not come

from an RBC model.
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Christiano et al.

conclude that RBC

theory is alive

and well.



LSVAR Results Not Robust
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conclude that

the results

are inconclusive.



LSVAR Sensitive to Data Inputs
H

ou
rs

P
er

C
ap

ita
(2

00
0:

1
=

1)

1950 1960 1970 1980 1990 2000
0.7

0.8

0.9

1

1.1

1.2
Christiano et al. (2003)
Gali and Rabanal (2004)
Francis and Ramey (2004)

Only difference

is data inputs,

not method.



LSVAR Sensitive Even in Shorter Sample
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But even with a

shorter sample,

reach very different

conclusions.



Punchline

• Class of counterexamples to main claim of SVAR literature

◦ SVARs fail even weak test

◦ Propositions provide conditions when SVAR works

In models without capital

In models with singular variance-covariance matrix

◦ Quantitatively, errors grow with importance of nontechnology shocks



My New View

• “SVAR fact” is bad language

• SVARs are not robust and therefore are not useful guides for theory

• To be useful, must pass strong test



Absent a greater willingness to engage in empirical fragility analysis,

structural empirical work will simply cease to be relevant. We may con-

tinue to publish, but our influence will surely perish.



Absent a greater willingness to engage in empirical fragility analysis,

structural empirical work will simply cease to be relevant. We may con-

tinue to publish, but our influence will surely perish.

— Martin Eichenbaum, 1991, J. of Economic Dynamics and Control


