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Background

• In Principle, Impulse Response Functions from SVARs are useful as a guide to
constructing and evaluating Dynamic Stochastic General Equilibrium (DSGE)
models.

• To be useful in practice, estimators of response functions must have good
sampling properties.
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What We Do

• Investigate the Sampling Properties of SVARs, When Data are Generated by
Estimated DSGE Models.

– Bias Properties of Impulse Response Function Estimators

∗ Bias: Mean of Estimator Minus True Value of Object Being Estimated

– Accuracy of Standard Estimators of Sampling Uncertainty

– Is Inference Sharp?

∗ How Large is Sampling Uncertainty?
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What We Do ...

• Throughout, We Assume The Identification Assumptions Motivated by
Economic Theory Are Correct

– Example: ‘Only Shock Driving Labor Productivity in Long Run is
Technology Shock’

• In Practice, Implementing VARs Involves Auxiliary Assumptions (Cooley-
Dwyer)

– Example: Lag Length Specification of VARs

– Failure of Auxilliary Assumptions May Induce Distortions
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What We Do ...

• We Look at Two Classes of Identifying Restrictions

• Long-run identification

– Exploit implications that some models have for long-run effects of shocks

• Short-run identification

– Exploit model assumptions about the timing of decisions relative to the
arrival of information.
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Key Findings

• With Short Run Restrictions, SVARs Work Remarkably Well

– Inference Sharp (Sampling Uncertainty Small), Essentially No Bias.

• With Long Run Restrictions,

– For Model Parameterizations that Fit the Data Well, SVARs Work Well

∗ Inference is correct but not necessarily sharp.

∗ Sharpness is example specific.

– Examples Can Be Found In Which There is Noticeable Bias

∗ But, Analyst Who Looks at Standard Errors Would Not Be Misled
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Outline of Talk

• Analyze Performance of SVARs Identified with Long Run Restrictions

– Reconcile Our Findings for Long-Run Identification with CKM

• Analyze Performance of SVARs Identified with Short Run Restrictions

• We Focus on the Question:

– How do hours worked respond to a technology shock?
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A Conventional RBC Model

• Preferences:

E0

∞X
t=0

(β (1 + γ))t [log ct + ψ log (1− lt)] .

• Constraints:

ct + (1 + τx) [(1 + γ) kt+1 − (1− δ) kt] ≤ (1− τ lt)wtlt + rtkt + Tt.

ct + (1 + γ) kt+1 − (1− δ) kt ≤ kθt (ztlt)
1−θ .

• Shocks:
∆ log zt = µZ + σzε

z
t

τ lt+1 = (1− ρl) τ̄ l + ρlτ lt + σlε
l
t+1

• Information: Time t Decisions Made After Realization of All Time t Shocks
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Long-Run Properties of Our RBC Model

• εzt is only shock that has a permanent impact on output and labor productivity

at ≡ yt/lt.

• Exclusion property:

lim
j→∞

[Etat+j −Et−1at+j] = f (εzt only) ,

• Sign property:
f is an increasing function.
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Parameterizing the Model

• Parameters:

– Exogenous Shock Processes: We Estimate These
– Other Parameters: Same as CKM

β θ δ ψ γ τ̄x τ̄ l µz
0.981/4 1

3 1− (1− .06)1/4 2.5 1.011/4 − 1 0.3 0.243 1.021/4 − 1

• Baseline Specifications of Exogenous Shocks Processes:

– Our Baseline Specification

– Chari-Kehoe-McGrattan (July, 2005) Baseline Specification
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Our Baseline Model (KP Specification):

• Technology shock process corresponds to Prescott (1986):

∆ log zt = µZ + 0.011738× εzt .

• Law of motion for Preference Shock, τ l,t:

τ l,t = 1−
µ
ct
yt

¶µ
lt

1− lt

¶µ
ψ

1− θ

¶
(Household and Firm Labor Fonc)

τ l,t = τ̄ l + 0.9934× τ l,t−1 + .0062× εlt.

• Estimation Results Robust to Maximum Likelihood Estimation -

– Output Growth and Hours Data
– Output Growth, Investment Growth and Hours Data (here, τxt is stochastic)
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CKM Baseline Model

• Exogenous Shocks: also estimated via maximum likelihood

∆ log zt = 0.00516 + 0.0131× εzt
τ lt = τ̄ l + 0.952τ l,t−1 + 0.0136× εlt.

• Note: the shock variances (particularly τ lt) are very large compared with KP

• We Will Investigate Why this is so, Later

23



Estimating Effects of a Positive Technology Shock

• Vector Autoregression:

Yt+1 = B1Yt−1 + ... +BpYt−p + ut+1, Eutu
0
t = V,

ut = Cεt, Eεtε0t = I, CC 0 = V

Yt =

µ
∆ log at
log lt

¶
, εt =

µ
εzt
ε2t

¶
, at =

Yt
lt
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Estimating Effects of a Positive Technology Shock

• Vector Autoregression:

Yt+1 = B1Yt−1 + ... +BpYt−p + ut+1, Eutu
0
t = V,

ut = Cεt, Eεtε0t = I, CC 0 = V

Yt =

µ
∆ log at
log lt

¶
, εt =

µ
εzt
ε2t

¶
, at =

Yt
lt

• Impulse Response Function to Positive Technology Shock (εzt ):

Yt −Et−1Yt = C1ε
z
t , EtYt+1 −Et−1Yt+1 = B1C1ε

z
t

• Need
B1, ..., Bp, C1.
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Identification Problem

• From Applying OLS To Both Equations in VAR, We ‘Know’:

B1, ..., Bp, V

• Problem, Need first Column of C, C1
• Following Restrictions Not Enough:

CC 0 = V

• Identification Problem:

Not Enough Restrictions to Pin Down C1

• Need More Restrictions
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Identification Problem ...

• Impulse Response to Positive Technology Shock (εzt ):

lim
j→∞

[Etat+j −Et−1at+j] = (1 0) [I − (B1 + ... +Bp)]
−1C

µ
εzt
ε2t

¶
,

• Exclusion Property of RBC Model Motivates the Restriction:

D ≡ [I − (B1 + ... +Bp)]
−1C =

∙
x 0

number number

¸
• Sign Property of RBC Model Motivates the Restriction, x≥ 0.

DD0 = [I − (B1 + ... +Bp)]
−1 V

£
I − (B1 + ... +Bp)

0¤−1
• Exclusion/Sign Properties Uniquely Pin Down First Column of D, D1, Then,

C1 = [I − (B1 + ... +Bp)]D1 = fLR (V,B1 + ... +Bp)
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The Importance of Frequency Zero

• Note:

DD0 = [I − (B1 + ... +Bp)]
−1 V

£
I − (B1 + ... +Bp)

0¤−1 = S0

• S0 Is VAR-based Parametric Estimator of the Zero-Frequency Spectral Density
Matrix of Data

• An Alternative Way to Compute D1 (and, hence, C1) Is to Use a Different
Estimator of S0

S0 =
rX

k=−r
|1− k

r
|Ĉ (k) , Ĉ(k) =

1

T

TX
t=k

EYtY
0
t−k

• Modified SVAR Procedure Similar to Extending Lag Length, But Non-
Parametric
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Response of Hours to A Technology Shock

Long−Run Identification Assumption
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Diagnosing the Results

• What is Going on in Examples Where There is Some Bias?

– The Difficulty of Estimating the Sum of VAR Coefficients.

• Corroborating Our Answer: Results with Modified Long-run SVAR Procedure

• Reconciling with CKM
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Sims’ Approximation Theorem

• Suppose that the True VAR Has the Following Representation:

Yt = B(L)Yt−1 + ut, ut ⊥ Yt−s, s > 0.

• Econometrician Estimates Finite-Parameter Approximation to B(L) :

Yt = B̂1Yt−1 + B̂2Yt−2 + ... + B̂pYt−p + ut, Eutu
0
t = V̂

Ĉ =
h
Ĉ1

...Ĉ2
i
, εt =

µ
εzt
ε2t

¶
, Ĉ1 = fLR

³
V̂ , B̂1 + ... + B̂p

´

– Concern: B̂(L)May Have Too Few Lags (p too small)

– How Does Specification Error Affect Inference About Impulse Responses?
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Sims’ Approximation Theorem ...

• In Population, B̂, V̂ Chosen to Solve (Sims, 1972)

V̂ = minB̂
1
2π

R π

−π

h
B(e−iω)− B̂

¡
e−iω

¢i
SY (e

−iω)
h
B(eiω)0 − B̂

¡
eiω
¢0i

dω + V

• With No Specification Error, B̂(L) = B(L), V̂ = V

• With Short Lags,

– V̂ Accurate

– B̂1 + ... + B̂p Accurate Only By Chance (i.e., if SY (e
−i×0) large)

– No Reason to Expect Ŝ0 to be Accurate

42



Modified Long-run SVAR Procedure

• Replace Ŝ0 Implicit in Standard SVAR Procedure, with Non-parametric
Estimator of S0
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The Importance of Frequency Zero

Standard Method Bartlett Window

KP Model
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The Importance of Power at Low Frequencies

• Standard Conjecture

– Long- run Identification Most Likely to be Distorted If Non-Technology
Shocks Highly Persistent

• Conjecture is Incorrect

– Sims’ Formula Draws Attention to Possibility that Persistence Helps.
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The Importance of Frequency Zero

Standard Method Bartlett WindowCKM  Baseline Model
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Reconciling with CKM

• CKM Conclude Long-run SVARs Not Fruitful for Building DSGE Models.

• We Disagree: Three Reasons
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Reconciling with CKM

• CKM Conclude Long-run SVARs Not Fruitful for Building DSGE Models.

• We Disagree: Three Reasons

– CKM emphasize examples in which econometrician over-differences per
capita hours worked (DSVAR).

∗ Not a Fundamental Problem for SVARs
∗ Don’t Over - Difference (see CEV (2003a,b)).
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• We Disagree: Three Reasons

– CKM emphasize examples in which econometrician over-differences per
capita hours worked (DSVAR).

∗ Not a Fundamental Problem for SVARs
∗ Don’t Over - Difference (see CEV (2003a,b)).

– CKM Adopt a Different Measure of Distortions in SVARs
∗ Their Metric Is Not Informative About Performance of VARs in Practice
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Reconciling with CKM

• CKM Conclude Long-run SVARs Not Fruitful for Building DSGE Models.

• We Disagree: Three Reasons

– CKM emphasize examples in which econometrician over-differences per
capita hours worked (DSVAR).

∗ Not a Fundamental Problem for SVARs
∗ Don’t Over - Difference (see CEV (2003a,b)).

– CKM Adopt a Different Measure of Distortions in SVARs
∗ Their Metric Is Not Informative About Performance of VARs in Practice

– The Data Overwhelmingly Reject CKM’s Parameterization
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Measuring Distortion in SVARs

• Our Measure:

Compare True Model Impulse with Mean of Corresponding Estimator

• Measure Emphasized Most in CKM:

Compare True Model Impulse with What 4-lag SVAR with Infinite Data Would Find
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Measuring Distortion in SVARs ...

• For Our Purposes 4-Lag SVAR Plims are Uninteresting.

– In Practice, We Do Not Have An Infinite Amount of Data

– And, if We Did Have Infinite Data We’d Use More than 4 Lags

∗ In this Case, there are No Large Sample Distortions
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Measuring Distortion in SVARs ...

• For Our Purposes 4-Lag SVAR Plims are Uninteresting.

– In Practice, We Do Not Have An Infinite Amount of Data

– And, if We Did Have Infinite Data We’d Use More than 4 Lags

∗ In this Case, there are No Large Sample Distortions

• For SVARs to be Useful in Practice

– Need to Work Well in Samples Like Actual Data.

– Want to Know About Bias, Characterization of Sampling Uncertainty,
Precision.
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CKM Baseline Model is Rejected by the Data

• CKM estimate their model using MLE with Measurement Error.
– Let

Yt = (∆ log yt, log lt, ∆ log it, ∆ logGt)
0 ,

– Observer Equation:

Yt = Xt + ut, Eutu
0
t = R,

R is a diagonal matrix,

ut : 4× 1 vector of iid measurement error,

Xt : model implications for Yt
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CKM Baseline Model is Rejected by the Data ...

• CKM Allow for Four Shocks

(τ l,t, zt, τxt, gt)

.

Gt = gtzt

• CKM fix the elements on the diagonal of R to equal 1/100 × V ar(Yt)
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CKM Baseline Model is Rejected by the Data ...

• CKM Allow for Four Shocks

(τ l,t, zt, τxt, gt)

.

Gt = gtzt

• CKM fix the elements on the diagonal of R to equal 1/100 × V ar(Yt)

• For Purposes of Estimating the Baseline Model, Assume:

gt = ḡ, τ xt = τx.

• So,

∆ logGt = ∆ log zt + small measurement errort .
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CKM Baseline Model is Rejected by the Data ...

• Overwhelming Evidence Against CKM Baseline Model

Likelihood Ratio Statistic
Likelihood Value (degrees of freedom)

Estimated model −328
Freeing Measurement Error on g = z 2159 4974 (1)
Freeing All Four Measurement Errors 2804 6264 (4)
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CKM Baseline Model is Rejected by the Data ...

• Overwhelming Evidence Against CKM Baseline Model

Likelihood Ratio Statistic
Likelihood Value (degrees of freedom)

Estimated model −328
Freeing Measurement Error on g = z 2159 4974 (1)
Freeing All Four Measurement Errors 2804 6264 (4)

• Evidence of Bias in Estimated CKM Model Reflects CKM Choice of
Measurement Error

– Free Up Measurement error on g = z

∗ Produces Model With Good Bias Properties: Similar to KP Benchmark
Model
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The Role of ∆g
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The Role of ∆g
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The Role of ∆g
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Alternate CKM Model With Government
Spending Also Rejected

• CKM Model With Gt:

Gt = gtzt

gt First Order Autoregression

• Model Estimated Holding Measurement Error Fixed As Before.

– Resulting Model Implies Noticeable Bias in SVARs

– But, Sampling Uncertainty is Big and Econometrician Would Know it

– When Restriction on Measurement Error is Dropped Resulting Model
Implies Bias in SVARs Small
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The Role of Government Spending
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CKM Assertion that SVARs Perform Poorly
‘Large’ Range of Parameter Values

• Problem With CKM Assertion

– Allegation Applies only to Parameter Values that are Extremely Unlikely

– Even in the Extremely Unlikely Region, Econometrician Who Looks at
Standard Errors is Innoculated from Error
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A Summing Up So Far

• With Long Run Restrictions,

– For RBC Models that Fit the Data Well, Structural VARs Work Well

– Examples Can Be Found With Some Bias

∗ Reflects Difficulty of Estimating Sum of VAR Coefficients

∗ Bias is Small Relative to Sampling Uncertainty

∗ Econometrician Would Correctly Assess Sampling Uncertainty

• Golden Rule: Pay Attention to Standard Errors!

41



Turning to SVARS with Short Run Identifying
Restrictions

• Bulk of SVAR Literature Concerned with Short-Run Identification
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Turning to SVARS with Short Run Identifying
Restrictions

• Bulk of SVAR Literature Concerned with Short-Run Identification

• Substantive Economic Issues Hinge on Accuracy of SVARs with Short-run
Identification

68



Turning to SVARS with Short Run Identifying
Restrictions

• Bulk of SVAR Literature Concerned with Short-Run Identification

• Substantive Economic Issues Hinge on Accuracy of SVARs with Short-run
Identification

• Ed Green’s Review of Mike Woodford’s Recent Book on Monetary Economics

– Recent Monetary DSGE Models Deviate from Original Rational Expecta-
tions Models (Lucas-Prescott, Lucas, Kydland-Prescott, Long-Plosser, and
Lucas-Stokey) By Incorporating Various Frictions.
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Turning to SVARS with Short Run Identifying
Restrictions

• Bulk of SVAR Literature Concerned with Short-Run Identification

• Substantive Economic Issues Hinge on Accuracy of SVARs with Short-run
Identification

• Ed Green’s Review of Mike Woodford’s Recent Book on Monetary Economics

– Recent Monetary DSGE Models Deviate from Original Rational Expecta-
tions Models (Lucas-Prescott, Lucas, Kydland-Prescott, Long-Plosser, and
Lucas-Stokey) By Incorporating Various Frictions.

– Motivated by Analysis of SVARs with Short-run Identification.
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SVARS with Short Run Identifying Restrictions

• Adapt our Conventional RBC Model, to Study VARs Identified with Short-run
Restrictions

– Results Based on Short-run Restrictions Allow Us to Diagnose Results
Based on Long-run Restrictions

• Recursive version of the RBC Model

– First, τ lt is observed
– Second, labor decision is made.
– Third, other shocks are realized.
– Then, everything else happens.
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The Recursive Version of the RBC Model

• Key Short Run Restrictions:

log lt = f (εl,t, lagged shocks)

∆ log
Yt
lt
= g (εzt , εl,t, lagged shocks) ,

• Recover εzt :
– Regress ∆ log Yt

lt
on log lt

– Residual is measure of εzt .

• This Procedure is Mapped into an SVAR identified with a Choleski decom-
postion of V̂.
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The Recursive Version of the RBC Model ...

• The Estimated VAR:

Yt = B1Yt−1 +B2Yt−2 + ... +BpYt−p + ut, Eutu
0
t = V

ut = Cεt, CC
0 = V.

C = [C1
...C2] , εt =

µ
εzt
ε2t

¶
• Impulse Response Response Functions Require: B1, ..., Bp, C1

• Short-run Restrictions Uniquely Pin Down C1 :

C1 = fSR

³
V̂
´

• Note: Sum of VAR Coefficients Not Needed
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Response of Hours to A Technology Shock

Short−Run Identification Assumption
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SVARs with Short Run Restrictions

• Perform remarkably well

– Inference is Sharp and Correct
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Short Run Versus Long Run Restrictions

• Recursive Results Helpful For Diagnosing Results with Long-run Identification

• Corroborates Theme: When there is Bias with Long-run Identification, It is
Because of Difficulties with Estimating Sum of VAR Coefficients

– Long-run Identification:

C1 = fLR

³
V̂ , B̂1 + ... + B̂p

´
– Short-run Identification:

C1 = fSR

³
V̂
´

• Recursive Version of CKM Model Rationalizes Both Short and Long-run
Identification
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The Importance of Frequency Zero: Another View

Analysis of Recursive Version of Baseline CKM Model
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VARs and Models with Nominal Frictions

• Data Generating Mechanism: an estimated DSGE model embodying nominal
wage and price frictions as well as real and monetary shocks ACEL (2004)

• Three shocks

– Neutral shock to technology,

– Shock to capital-embodied technology

– Shock to monetary policy.

• Each shock accounts for about 1/3 of cyclical output variance in the model
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Analysis of VARS using the ACEL model as DGP
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Continuing Work with Models with Nominal
Frictions

• ACEL (2004) Assesses Bias Properties in VARs with Many More Variables

– Requires Expanding Number of Shocks

– Results So Far are Mixed

∗ Could Be an Artifact of How We Introduced Extra Shocks

∗We are Currently Studying This Issue.
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Conclusion

• We studied the properties of SVARs.

– With short run restrictions, SVARs perform remarkably well in All
Examples Considered

∗ VAR Coefficients Reasonably Accurately Estimated With 4 Lags
(Despite Presence of Capital)

– With long run restrictions, SVARs also perform well for Data Generating
Mechanisms that Fit the Data Well

∗ Bias is Small & Sampling Uncertainty Characterized Accurately
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Conclusion ...

• There do exist cases when long run SVARs Exhibit Some Bias,

– When there is Bias, Reflects Difficulty of Estimating Sum of VAR
Coefficients Accurately

– However,

∗ Cases are Based on Models that are Overwhelmingly Rejected by the US
Data

∗ In Any Event, Econometrician Would See Large Standard Errors and
Discount the Evidence

• Rule for Staying Out of Trouble With Long-Run SVARs: Pay Attention to
Standard Errors
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Conclusion ...

• In The RBC Examples Shown With Long-run Restrictions:

– Sampling Uncertainty High

• High Sampling Uncertainty Does Not Always Occur

– Ex #1: ACEL Simulations

– Ex #2: In ACEL Estimated SVAR, Inflation Responds Strongly to Neutral
Technology Shock

∗ Simulations (Cautiously) Suggest We Should Trust Standard Errors from
SVARs with Long-Run Restrictions

∗ Result Casts a Cloud Over Models with Price Frictions
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Mean of Small Sample Estimator
Basis of our Distortion Metric: Bias

What an Economist Using a VAR(4) 
With Infinite Data Would Find
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