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• To be useful in practice, SVARs must have good sampling properties.
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• What We Do:

– Investigate the Sampling Properties of SVARs, When
∗ Data are Generated by Estimated DSGE Models
∗ Econometrician Does Not Make Fundamental Errors of Identification

• What We Find:

– Depending on the Underlying True Model Generating the Data, Information
Provided by SVARs May Be
∗ Precise and Reliable
∗ Totally Imprecise

– An Econometrician Who Pays Attention to Standard Errors Will Know
Which Case He/She is In
∗ Huge Standard Errors: Walk Away!
∗ Tiny Standard Errors: Pay Attention!
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Overview ...

• SVARs Based on Short Run Identification Restrictions Often Have Tight
Standard Errors

– These SVARs Should be Taken Seriously

• SVARs Based on Long Run Identification:

– For Models that Fit the Data Well, Little Bias But Standard Errors Often
(Not Always) Big

– CKM Provide an Example in Which There is Substantial Bias,

∗ Special Status Assigned to Example Bec Estimated By Max Likelihood

∗ But, Sampling Uncertainty Much Bigger than Bias

∗ Underlying DSGE Model Strongly Rejected by Data



Outline of Talk

• Analyze Performance of SVARs Identified with Long Run Restrictions

• Analyze Performance of SVARs Identified with Short Run Restrictions

• We Focus on the Question:

– How do hours worked respond to a technology shock?



A Conventional RBC Model

• Preferences:

E0

∞X
t=0

(β (1 + γ))t [log ct + ψ log (1− lt)] .

• Constraints:

ct + (1 + τx) [(1 + γ) kt+1 − (1− δ) kt] ≤ (1− τ lt)wtlt + rtkt + Tt.

ct + (1 + γ) kt+1 − (1− δ) kt ≤ kθt (ztlt)
1−θ .

• Shocks:
∆ log zt = µZ + σzε

z
t

τ lt+1 = (1− ρl) τ̄ l + ρlτ lt + σlε
l
t+1

• Information: Time t Decisions Made After Realization of All Time t Shocks



Parameterizing the Model

• Parameters:
– Exogenous Shock Processes: We Estimate These
– Other Parameters: Same as CKM

β θ δ ψ γ τ̄x τ̄ l µz
0.981/4 1

3 1− (1− .06)1/4 2.5 1.011/4 − 1 0.3 0.243 1.021/4 − 1



Parameterizing the Model

• Parameters:
– Exogenous Shock Processes: We Estimate These
– Other Parameters: Same as CKM

β θ δ ψ γ τ̄x τ̄ l µz
0.981/4 1

3 1− (1− .06)1/4 2.5 1.011/4 − 1 0.3 0.243 1.021/4 − 1

• Baseline Specifications of Exogenous Shocks Processes:

– Our Baseline Specification

– Chari-Kehoe-McGrattan (July, 2005) Baseline Specification

– Both Parameterizations Based on Maximum Likelihood



Experiments with Estimated Models

• Simulate 1000 data sets, each of length 180 observations, using DSGE model
as Data Generating Mechanism.

• On Each Data Set: Estimate a four lag VAR.



Response of Hours to A Technology Shock
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CKM Baseline Model Embeds a Remarkable
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• Basic Estimation Procedure: Maximum Likelihood With Measurement Error

• Core Estimation Assumption

– Technology Growth Well Measured by ∆Gt

– Gt ~ government consumption plus net exports

• This Assumption Drives Baseline Results and is Overwhelmingly Rejected by
the Data



CKM Baseline Model Assumption is Rejected

• CKM estimate their Baseline Model using MLE with Measurement Error.
– Observed Data

Yt = (∆ log yt, log lt, ∆ log it, ∆ logGt)
0 ,

– Observer Equation:

Yt = Xt + ut, Eutu
0
t = R,

R is a diagonal matrix,

ut : 4× 1 vector of iid measurement error,

Xt : model implications for Yt
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CKM Baseline Model Embeds a Remarkable Assumption ...

• CKM Allow for Four Shocks

(τ l,t, zt, τxt, gt)

.

Gt = gtzt

• CKM fix the elements on the diagonal of R to equal 1/100 × V ar(Yt)

• For Purposes of Estimating the Baseline Model, Assume:

gt = ḡ, τ xt = τx.

• So, CKM Baseline Model Assumption:

∆ logGt = ∆ log zt + small measurement errort .



CKM Baseline Model Embeds a Remarkable Assumption ...

• Overwhelming Evidence Against CKM Baseline Model Assumption

Likelihood Ratio Statistic
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CKM Baseline Model Embeds a Remarkable Assumption ...

• Overwhelming Evidence Against CKM Baseline Model Assumption

Likelihood Ratio Statistic
Likelihood Value (degrees of freedom)

Estimated model −328
Freeing Measurement Error on g = z 2159 4974 (1)
Freeing All Four Measurement Errors 2804 6264 (4)

• Evidence of Bias in Estimated CKM Model Reflects CKM Baseline Model
Assumption

– Free Up Measurement error on g = z

∗ Produces Model With Good Bias Properties: Similar to KP Benchmark
Model
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Alternate CKM Model With Government
Spending Also Rejected

• CKM Model With Gt:

Gt = gtzt

gt First Order Autoregression

• Model Estimated Holding Measurement Error Fixed As Before.

– Resulting Model Implies Noticeable Bias in SVARs

– But, Sampling Uncertainty is Big and Econometrician Would Know it

– When Restriction on Measurement Error is Dropped Resulting Model
Implies Bias in SVARs Small



The Role of Government Spending
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CKM Assert that SVARs Perform Poorly for
‘Large’ Range of Parameter Values

• Problem With CKM Assertion

– Allegation Applies only to Parameter Values that are Extremely Unlikely

– Even in the Extremely Unlikely Region,

∗ Econometrician Who Looks at Standard Errors is Innoculated from Error
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A Summing Up So Far

• With Long Run Restrictions,

– For RBC Models that Fit the Data Well, Structural VARs Work Well

– CKM Report an Example With Some Bias

∗ Bias is Small Relative to Sampling Uncertainty: Econometrician Would
Not Be Misled

∗ Example Strongly Rejected by Data

• Golden Rule: Pay Attention to Standard Errors!
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SVARS with Short Run Identifying Restrictions

• Adapt our Conventional RBC Model, to Study VARs Identified with Short-run
Restrictions

– Results Based on Short-run Restrictions Allow Us to Diagnose Results
Based on Long-run Restrictions

• Recursive version of the RBC Model

– First, τ lt is observed
– Second, labor decision is made.
– Third, other shocks are realized.
– Then, everything else happens.



Response of Hours to A Technology Shock

Short−Run Identification Assumption

KP Model CKM Baseline Model
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SVARs with Short Run Restrictions

• Perform remarkably well

– Inference is Precise and Correct



VARs and Models with Nominal Frictions

• Data Generating Mechanism: an estimated DSGE model embodying nominal
wage and price frictions as well as real and monetary shocks ACEL (2004)

• Three shocks

– Neutral shock to technology,

– Shock to capital-embodied technology

– Shock to monetary policy.

• Each shock accounts for about 1/3 of cyclical output variance in the model



Analysis of VARS using the ACEL Model as DGP

Neutral Technology Shock Monetary Policy Shock
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Conclusion

• We studied the properties of SVARs.

– With short run restrictions, SVARs perform remarkably well in All
Examples Considered

– With long run restrictions, Will Not Be Misled as Long as You:

Pay Attention to Standard Errors!!
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