Sweat Equity in U.S. Private Business

Anmol Bhandari and Ellen McGrattan

August 2019

Nordic Macroeconomic Symposium
Motivation

- Want framework to study business tax reforms
- Need to include private businesses
 - Significant net income
 - Different from public businesses
- Currently, little known about assets or tax effects
Private Businesses

- Earn 1/2 of US business net income
- Have few owners bearing substantial risks
- Use owner’s time or *sweat* for business activities
 - Production
 - Building capital, eg, client lists, tradenames
- Face different tax policies than public firms
Theory of Sweat Equity

- GE model with heterogeneous agents choosing to
 - Work for someone else or
 - Run own private business and
 - Accumulate sweat equity
 - Produce goods & services

- Provides new framework to:
 - Measure private business activity and capital
 - Study business tax reforms (eg, TJCA17)
What’s New?

- Standard analysis:
 - Based on Lucas span of control model
 - Extended to include financing frictions
 - Matched to survey data like SCF or PSID

- Our analysis:
 - Based on new framework with sweat
 - Found financing frictions not relevant for results
 - Matched to NIPA, IRS, Census data

⇒ Bigger capital stock, greater impact of tax policy
Main Findings

- Value of private business sweat equity \((V_b)\)
 - Similar magnitude to value of fixed assets
 - Little dispersion in \(V_b \Rightarrow \) high dispersion in returns

- Tax experiments show:
 - Large sectoral and aggregate effects
 - Abstracting from sweat leads to wrong answers
Related Literature

- Uses evidence from household surveys (Too many to list...)
Outline

• Data

• Theory

• Parameters

• Results
Data Motivating Analysis
Data Motivating Analysis

- Assets in selling businesses reported to IRS, ie,
 - Cash and deposit accounts
 - Government securities and publicly traded stocks
 - Debt instruments
 - Inventory
 - Fixed assets and land
 - Section 197 intangibles
 - Goodwill

- Buyers & sellers agree to allocation

- Allocation determines capital gains and amortizations
Data Motivating Analysis

- Assets in selling businesses reported to IRS, ie,
 - Cash and deposit accounts
 - Government securities and publicly traded stocks
 - Debt instruments
 - Inventory
 - Fixed assets and land
 - Section 197 intangibles
 - Goodwill

- Buyers & sellers agree to allocation

- Allocation determines capital gains and amortizations
Evidence: Private Business Sales

- *Pratt’s Stats*: transaction level broker data
 - 27,000 acquired private businesses
 - Seller and sale details
 - Income and balance sheet data
 - Purchase price allocation for IRS Form 8594

- Main finding: these businesses are intangible intensive
Intangible Intensity

\[
\text{Intensity} = \frac{\text{Section 197 intangibles} + \text{goodwill}}{\text{Total asset value}}
\]

Note: total assets is purchase price net of assumed debts
Intangible Intensity by Legal Structure

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Mean</th>
<th>Median</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Corporations</td>
<td>5,519</td>
<td>0.58</td>
<td>0.64</td>
<td>0.32</td>
</tr>
<tr>
<td>Sole Proprietors</td>
<td>1,140</td>
<td>0.57</td>
<td>0.64</td>
<td>0.31</td>
</tr>
<tr>
<td>Partnerships</td>
<td>196</td>
<td>0.57</td>
<td>0.67</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Furthermore, intensity high regardless of industry or size
Some Issues

- Pratt’s Stats dataset
 - Not representative
 - Excludes ongoing businesses

- Want measures for all US private business
Theory: Overview
Environment

- Two sectors: C-corp, Pass-through
Environment

• Two sectors: C-corp, Pass-through

• Households of age j

 ○ Endowed with stochastic abilities z, ϵ

 ○ Face occupational choice
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice
 - Work for someone else
 - Run own business
Environment

- Two sectors: C-corp, Pass-through
- Households of age \(j \)
 - Endowed with stochastic abilities \(z, \epsilon \)
 - Face occupational choice

\[\text{Work for someone else} \quad \text{Run own business} \]

Incomes:

\[
we - p z f_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - w n_p - e
\]
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice
 - Work for someone else
 - Run own business

incomes: $w\epsilon$

$$pzf_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e$$

↑
Sweat capital
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice
 - Work for someone else
 - Run own business

incomes: $w\epsilon$

$$pzf_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e$$

↑

Fixed assets
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice
 \[
 \Rightarrow \quad \text{Work for someone else} \\
 \Rightarrow \quad \text{Run own business}
 \]
 \[
 \text{incomes: } \ wage \quad pzf_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e
 \]
 \[
 \uparrow
 \]
 Owner’s hours in production
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice

 \[\begin{array}{c}
 \leftarrow \quad \text{Work for someone else} \\
 \rightarrow \quad \text{Run own business}
 \end{array} \]

incomes: $w \epsilon$

\[p z f_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e \]

\[\uparrow \]

Worker hours in production
Environment

- Two sectors: C-corp, Pass-through
- Households of age \(j \)
 - Endowed with stochastic abilities \(z, \epsilon \)
 - Face occupational choice

\[\text{Work for someone else} \quad \text{Run own business} \]

incomes: \(w \epsilon \)

\[p z f_y(\kappa, k_p, h_y, n_p) - (r + \delta_k) k_p - w n_p - e \]

\[\kappa' = (1 - \delta_\kappa) \kappa + f_\kappa(h_\kappa, e) \]

Owner’s hours to build sweat capital
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice

 \leftarrow Work for someone else \rightarrow Run own business

incomes: $w\epsilon$

$$pz f_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e$$

$$\kappa' = (1 - \delta_\kappa)\kappa + f_\kappa(h_\kappa, e)$$

\uparrow

Expenses to build sweat capital
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice

\[
\begin{align*}
\text{Work for someone else} & \quad \text{Run own business} \\
\text{incomes: } w\epsilon & \quad pz f_y(\kappa, k_p, h_y, n_p) - (r + \delta_\kappa)k_p - wn_p - e
\end{align*}
\]

\[
\begin{align*}
\kappa' &= (1 - \lambda)\kappa & \kappa' &= (1 - \delta_\kappa)\kappa + f_\kappa(h_\kappa, e) \\
\uparrow & \quad \uparrow & \quad \uparrow \\
\text{Sell for cash or keep, but depreciates if not in use}
\end{align*}
\]
Environment

- Two sectors: C-corp, Pass-through
- Households of age j
 - Endowed with stochastic abilities z, ϵ
 - Face occupational choice

\[
\begin{align*}
\text{Work for someone else} & \quad \text{Run own business} \\
\text{incomes: } w\epsilon & \quad pzf_y(\kappa, k_p, h_y, n_p) - (r + \delta_k)k_p - wn_p - e \\
\kappa' = (1 - \lambda)\kappa & \quad \kappa' = (1 - \delta_\kappa)\kappa + f_\kappa(h_\kappa, e)
\end{align*}
\]
- Government collects taxes on incomes & products
Theory: Details
Household Maximization

- States:
 - j: stochastic age (y, o)
 - a: financial assets
 - κ: sweat capital
 - $\zeta = (z, \epsilon)$: productivity shocks to business, wages

- Value functions:
 \[
 V_j(a, \kappa, \zeta) = \max \{ V_{j,p}(a, \kappa, \zeta), V_{j,w}(a, \kappa, \zeta) \}
 \]
 - Run business
 - Work for someone
\[V_{y,p}(a, \kappa, \zeta) = \max_{c_c, c_p, h_y, h_\kappa, k_p, n_p, e, a', \kappa'} \{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \} \]
Run Business

\[
V_{y,p}(a, \kappa, \zeta) = \max_{c_c, c_p, h_y, h_\kappa, k_p, n_p, e, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \right\}
\]

↑

value of running business when young
Run Business

\[V_{y,p}(a, \kappa, \zeta) = \max_{c_c, c_p, h_y, h_{\kappa}, k_p, n_p, e, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta'|\zeta) V(a', \kappa', \zeta') \right\} \]

\[c = \text{ces}(c_c, c_p) \]

\[c_c = \text{C-corp goods} \]

\[c_p = \text{private business goods} \]
Run Business

\[V_{y,p}(a, \kappa, \zeta) = \max_{c_c, c_p, h_y, h_\kappa, k_p, n_p, e, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \right\} \]

\[\ell = 1 - h_y - h_\kappa \]

\(h_y \) = hours in production

\(h_\kappa \) = hours accumulating sweat capital
Run Business

\[V_{y,p}(a, \kappa, \zeta) = \max_{c_c, c_p, h_y, h_\kappa, k_p, n_p, e, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \right\} \]

\[a' = (1 + r)a \]
\[+ py_p - (r + \delta_k)k_p - w n_p - e \] (financial returns)
\[- c_c - p c_p \]
\[- \text{taxes} \]
\[\geq \chi p y_p \] (working capital)

\[\kappa' = (1 - \delta_\kappa) \kappa + f_\kappa(h_\kappa, e) \] (sweat capital)

\[y_p = z f_y(\kappa, k_p, h_y, n_p) \] (private output)
Example: Dental Office

- **Assets:**

 \[a: \text{Financial assets (e.g., bank account, shares)} \]
 \[k_p: \text{Dental equipment (owned or leased)} \]
 \[\kappa: \text{Patient list} \]

- **Time use:**

 \[h_y: \text{Owner examines existing patients} \]
 \[h_{\kappa}: \text{Owner finds new patients} \]
 \[n_p: \text{Hygenists examine existing patients} \]

- **Expenses:**

 \[e: \text{Local advertising} \]
$V_{y,w}(a, \kappa, \zeta) = \max_{c_c, c_p, n, a', \kappa'} \{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \}$
Work for Someone Else

\[V_{y,w}(a, \kappa, \zeta) = \max_{c_c, c_p, n, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \right\} \]

↑

value of employment when young
Work for Someone Else

\[V_{y,w}(a, \kappa, \zeta) = \max_{a', \kappa', c, c_p, n} \{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \} \]

\[c = \text{ces}(c_c, c_p) \]

\[c_c = \text{C-corp goods} \]

\[c_p = \text{private business goods} \]
Work for Someone Else

\[V_{y,w}(a, \kappa, \zeta) = \max_{c_c, c_p, n, a', \kappa'} \{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta'|\zeta) V(a', \kappa', \zeta') \} \]

\[\ell = 1 - n \]

\[n = \text{hours in production} \]
Work for Someone Else

\[V_{y,w}(a, \kappa, \zeta) = \max_{c, c', n, a', \kappa'} \left\{ U(c, \ell) + \beta \sum_{\zeta'} \mu(\zeta' | \zeta) V(a', \kappa', \zeta') \right\} \]

\[a' = (1 + r)a \quad \text{(financial returns)} \]
\[+ w\epsilon n \quad \text{(compensation)} \]
\[- c_c - p c_p \quad \text{(consumption)} \]
\[- \text{taxes} \]
\[\geq 0 \]

\[\kappa' = (1 - \lambda)\kappa \quad \text{(sweat capital)} \]
Stochastic Aging

- Continuation value when young:

\[
V(a', \kappa', \zeta') = \pi_y \sum_{\zeta'} \pi(\zeta' | \zeta) V_y(a', \kappa', \zeta') \\
+ (1 - \pi_y) \sum_{\zeta'} \pi(\zeta' | \zeta) V_o(a', \kappa', \zeta')
\]

- When old:
 - Receive old-age transfers \((T_r)\)
 - Hit by permanent productivity shock \((\xi)\)

- When die:
 - Transfer \(a'\) and part of \(\kappa\) to descendants \((\varphi)\)
Rest of Model

- C corporation maximization

\[
\max_{k_c, n_c} A k_c^\theta n_c^{1-\theta} - wn_c - (r_c + \delta_k)k_c
\]

- All markets clear

- Government budget balances

\[
g + (r - \gamma)b = \tau_c \left(\int c_{ci} di + \int p_{pi} di \right) + \int w^w (w e_i n_i) di \\
+ \int T^b (p y_{pi} - (r + \delta_k)k_{pi} - wn_{pi} - e_i) di + \tau_p (y_c - wn_c - \delta_k k_c) \\
+ \tau_d (y_c - wn_c - (\gamma + \delta_k)k_c - \tau_p (y_c - wn_c - \delta_k k_c))
\]
Model National Accounts

Income shares:
- Sweat income: \(\int (py_{pi} - (r + \delta_k)k_{pi} - wn_{pi} - e_i) \, di \)
- Pass-thru labor: \(w \int n_{pi} \, di \)
- Pass-thru capital: \((r + \delta_k) \int k_{pi} \, di \)
- C corp labor: \(wn_c \)
- C corp capital: \((r_c + \delta_k)k_c \)

Product shares:
- Private consumption: \(\int (c_{ci} + pc_{pi}) \, di \)
- Pass-thru investment: \(\int x_{pi} \, di \)
- C corp investment: \(x_c \)
- Govt consumption: \(g \)

Note: Nonbusiness activity added separately
Parameters
Disciplining the Theory

- NIPA with private/public business categorized separately
- Census survey of business owners (SBO)
 - Age of business
 - Hours of owners
 - Financing requirements
- IRS panel of W-2s and business net incomes
Disciplining the Theory

- NIPA with private/public business categorized separately
- Census survey of business owners (SBO)
 - Age of business
 - Hours of owners
 - Financing requirements
- IRS panel of W-2s and business net incomes

Next: Show how data used to identify key parameters
Functional forms

- Preferences:
 \[U(c, \ell) = (c\ell^\psi)^{1-\sigma}/(1 - \sigma) \]
 \[c(c_c, c_p) = c_c^\eta c_p^{1-\eta} \]

- Technologies:
 \[F(k_c, n_c) = k_c^\theta n_c^{1-\theta} \]
 \[f_\kappa(h_\kappa, e) = h_\kappa^\vartheta e^{1-\vartheta} \]
 \[f_y(\kappa, k_p, h) = \kappa^{\phi} k_p^{\alpha} h^{1-\phi-\alpha} \]
 \[h(h_y, n_p) = (\omega h_y^\rho + (1 - \omega) n_p^\rho)^{1/\rho} \]

- Fiscal policy:
 \[T^b(\cdot), T^w(\cdot): \text{piecewise linear} \]

- Shocks:
 \[(z, \epsilon): \text{finite state Markov process} \]
Baseline Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount factor (β)</td>
<td>0.98</td>
<td>Risk-free rate 4%</td>
</tr>
<tr>
<td>Inverse IES (σ)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Leisure weight (ψ)</td>
<td>1.38</td>
<td>BLS hours</td>
</tr>
<tr>
<td>C-corp good share (η)</td>
<td>45.6</td>
<td>NIPA income shares</td>
</tr>
<tr>
<td>FA shares & depr. (θ, α, δ_k)</td>
<td>50.7, 30, 4.1</td>
<td>NIPA</td>
</tr>
<tr>
<td>CES hours (ω, ρ)</td>
<td>64, 0.5</td>
<td>NIPA, IRS, LBD</td>
</tr>
<tr>
<td>Sweat share & depr. (ϕ, λ, δ_k)</td>
<td>15, 70, 4.1</td>
<td>SBO age profile</td>
</tr>
<tr>
<td>Sweat accumulation (ϑ)</td>
<td>41.8</td>
<td>BEA IO table</td>
</tr>
<tr>
<td>Transition matrix for (z, ϵ)</td>
<td>see text</td>
<td>IRS panel data</td>
</tr>
<tr>
<td>Life cycle ($\pi_y, \pi_o, \xi, \varphi$)</td>
<td>98, 93, 50, 90</td>
<td>Census, SBO</td>
</tr>
</tbody>
</table>
Government policies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spending shares:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government consumption ((g/y))</td>
<td>13.3</td>
<td>NIPA</td>
</tr>
<tr>
<td>Old-age transfers ((T_r/y))</td>
<td>6.4</td>
<td>NIPA</td>
</tr>
<tr>
<td>Tax rates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption ((\tau_c))</td>
<td>6.5</td>
<td>NIPA</td>
</tr>
<tr>
<td>Dividends ((\tau_d))</td>
<td>13.3</td>
<td>IRS, FOF</td>
</tr>
<tr>
<td>C-corporate profits ((\tau_p))</td>
<td>36.0</td>
<td>NIPA, KPMG</td>
</tr>
<tr>
<td>Tax schedules</td>
<td>see text</td>
<td>IRS</td>
</tr>
</tbody>
</table>
Measuring Sweat Equity
Measurement Concepts

- Sweat dividend

\[d = \text{factor share of } \kappa \times \text{output} - \text{expenses} \]

\[\text{rents to sweat capital} \]

- Sweat equity

\[V_b(a, \kappa, \zeta) = d + \sum_{\zeta'} \mu(\zeta' | \zeta) M(s' | s)V_b(a', \kappa', \zeta') \]

with \[M(\zeta' | \zeta) = \beta \frac{U_c(c', \ell')}{U_c(c, \ell)} \text{ or } \frac{(1+g)}{(1+r)} \]
Measuring Aggregate Sweat Equity

- Total sweat equity

\[\int V_{bi} \, di = 0.93 \text{ to } 1.1 \times GDP \]

- Back of the envelope:
 - Divide NIPA pass-thru income by \(r - g \)
 - Adjust for share of sweat capital (\(\approx 1/3 \)) and risk
Measuring Aggregate Sweat Equity

- Total sweat equity

\[\int V_{bi} \, di = 0.93 \text{ to } 1.1 \times \text{GDP} \]

- Some comparisons:
 - Fixed assets used in pass-thrus about \(1 \times \text{GDP} \)
 - Non-sweat intangibles about \(1.4 \times \text{GDP} \)
Measuring Aggregate Sweat Equity

• Total sweat equity

\[\int V_{bi} \, di = 0.93 \text{ to } 1.1 \times GDP \]

• Some comparisons:
 - Fixed assets used in pass-thrus about \(1 \times GDP \)
 - Non-sweat intangibles about \(1.4 \times GDP \)

What about the distribution?
Distributional Statistics

<table>
<thead>
<tr>
<th>Mean</th>
<th>Intangible Intensity</th>
<th>Sweat Equity</th>
<th>Gross Return</th>
<th>Dividend Yield</th>
<th>Measured \ln TFP</th>
<th>Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stdev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Only “young” businesses included
Distributional Statistics

<table>
<thead>
<tr>
<th></th>
<th>Intangible Intensity</th>
<th>Sweat Equity</th>
<th>Gross Return</th>
<th>Dividend Yield</th>
<th>Measured ln TFP</th>
<th>Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stdev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Salient features:

- Significant intensities throughout
- Little dispersion in equity, much in returns
- Little dispersion in TFPs, much in markups

Only “young” businesses included
Distributional Statistics

<table>
<thead>
<tr>
<th></th>
<th>Intangible Intensity</th>
<th>Sweat Equity</th>
<th>Gross Return</th>
<th>Dividend Yield</th>
<th>ln TFP</th>
<th>Measured Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.60</td>
<td>1.59</td>
<td>13.2</td>
<td>2.1</td>
<td>0.79</td>
<td>15.6</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.36</td>
<td>0.67</td>
<td>29.0</td>
<td>12.7</td>
<td>0.10</td>
<td>58.1</td>
</tr>
<tr>
<td>25th</td>
<td>0.20</td>
<td>1.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.69</td>
<td>−15.9</td>
</tr>
<tr>
<td>50th</td>
<td>0.60</td>
<td>1.36</td>
<td>11.0</td>
<td>0.0</td>
<td>0.83</td>
<td>41.2</td>
</tr>
<tr>
<td>75th</td>
<td>1.00</td>
<td>2.27</td>
<td>18.7</td>
<td>10.7</td>
<td>0.89</td>
<td>59.6</td>
</tr>
<tr>
<td>99th</td>
<td>1.00</td>
<td>2.90</td>
<td>117.4</td>
<td>17.6</td>
<td>0.99</td>
<td>78.9</td>
</tr>
</tbody>
</table>

Only “young” businesses included
Distributional Statistics

<table>
<thead>
<tr>
<th></th>
<th>Intangible Intensity</th>
<th>Sweat Equity</th>
<th>Gross Return</th>
<th>Dividend Yield</th>
<th>(\ln) TFP</th>
<th>Measured Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.60</td>
<td>1.59</td>
<td>13.2</td>
<td>2.1</td>
<td>0.79</td>
<td>15.6</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.36</td>
<td>0.67</td>
<td>29.0</td>
<td>12.7</td>
<td>0.10</td>
<td>58.1</td>
</tr>
<tr>
<td>25th</td>
<td>0.20</td>
<td>1.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.69</td>
<td>(-15.9)</td>
</tr>
<tr>
<td>50th</td>
<td>0.60</td>
<td>1.36</td>
<td>11.0</td>
<td>0.0</td>
<td>0.83</td>
<td>41.2</td>
</tr>
<tr>
<td>75th</td>
<td>1.00</td>
<td>2.27</td>
<td>18.7</td>
<td>10.7</td>
<td>0.89</td>
<td>59.6</td>
</tr>
<tr>
<td>99th</td>
<td>1.00</td>
<td>2.90</td>
<td>117.4</td>
<td>17.6</td>
<td>0.99</td>
<td>78.9</td>
</tr>
</tbody>
</table>

Only “young” businesses included

How do measured TFP, markups compare to true?
Distributional Statistics

<table>
<thead>
<tr>
<th></th>
<th>Intangible Intensity</th>
<th>Sweat Equity</th>
<th>Gross Return</th>
<th>Dividend Yield</th>
<th>ln TFP</th>
<th>Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.60</td>
<td>1.59</td>
<td>13.2</td>
<td>2.1</td>
<td>0.30</td>
<td>0.0</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.36</td>
<td>0.67</td>
<td>29.0</td>
<td>12.7</td>
<td>0.59</td>
<td>0.0</td>
</tr>
<tr>
<td>25th</td>
<td>0.20</td>
<td>1.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>50th</td>
<td>0.60</td>
<td>1.36</td>
<td>11.0</td>
<td>0.0</td>
<td>0.42</td>
<td>0.0</td>
</tr>
<tr>
<td>75th</td>
<td>1.00</td>
<td>2.27</td>
<td>18.7</td>
<td>10.7</td>
<td>0.84</td>
<td>0.0</td>
</tr>
<tr>
<td>99th</td>
<td>1.00</td>
<td>2.90</td>
<td>117.4</td>
<td>17.6</td>
<td>0.84</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Only “young” businesses included

Answer: Measured and true are completely different
Sort Businesses by Sweat Capital

<table>
<thead>
<tr>
<th></th>
<th>Business Income</th>
<th>Owner Hours</th>
<th>Fin. Assets</th>
<th>Fixed Assets</th>
<th>ln TFP</th>
<th>Measured Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.01</td>
<td>0.01</td>
<td>6.6</td>
<td>0.1</td>
<td>0.89</td>
<td>-16.1</td>
</tr>
<tr>
<td>Q2</td>
<td>0.08</td>
<td>0.10</td>
<td>7.2</td>
<td>1.4</td>
<td>0.84</td>
<td>12.2</td>
</tr>
<tr>
<td>Q3</td>
<td>0.15</td>
<td>0.17</td>
<td>5.7</td>
<td>2.7</td>
<td>0.81</td>
<td>13.4</td>
</tr>
<tr>
<td>Q4</td>
<td>0.39</td>
<td>0.22</td>
<td>6.2</td>
<td>5.2</td>
<td>0.76</td>
<td>28.2</td>
</tr>
<tr>
<td>Q5</td>
<td>0.70</td>
<td>0.31</td>
<td>5.2</td>
<td>8.6</td>
<td>0.72</td>
<td>40.4</td>
</tr>
</tbody>
</table>

Only “young” businesses included
Sort Businesses by Sweat Capital

<table>
<thead>
<tr>
<th></th>
<th>Business Income</th>
<th>Owner Hours</th>
<th>Fin. Assets</th>
<th>Fixed Assets</th>
<th>ln TFP</th>
<th>Measured Markups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.01</td>
<td>0.01</td>
<td>6.6</td>
<td>0.1</td>
<td>0.89</td>
<td>−16.1</td>
</tr>
<tr>
<td>Q2</td>
<td>0.08</td>
<td>0.10</td>
<td>7.2</td>
<td>1.4</td>
<td>0.84</td>
<td>12.2</td>
</tr>
<tr>
<td>Q3</td>
<td>0.15</td>
<td>0.17</td>
<td>5.7</td>
<td>2.7</td>
<td>0.81</td>
<td>13.4</td>
</tr>
<tr>
<td>Q4</td>
<td>0.39</td>
<td>0.22</td>
<td>6.2</td>
<td>5.2</td>
<td>0.76</td>
<td>28.2</td>
</tr>
<tr>
<td>Q5</td>
<td>0.70</td>
<td>0.31</td>
<td>5.2</td>
<td>8.6</td>
<td>0.72</td>
<td>40.4</td>
</tr>
</tbody>
</table>

Only “young” businesses included

Proxies for κ: incomes, hours, tangibles, measured markups
Tax Policy Experiments
Tax Policy Experiments

- Lower tax rates ($\Delta \log(1 - \tau_{AMTR}) = 15\%$):
 - Private pass-through business net income
 - C corporate profits
 - Wages

- Comparable to TJCA17 change in corporate rates

- Show key margins missed with existing framework, eg,
 - Lucas span of control ($y_p = z k_p^\alpha n_p^\nu$)
Lower Rates on Businesses (% Changes)

<table>
<thead>
<tr>
<th>Private Activity</th>
<th>Private Businesses</th>
<th>All Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>No Sweat</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner hours, production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner hours, sweat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweat capital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed asset investment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured TFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured markups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average business age</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lower Rates on Businesses (% Changes)

<table>
<thead>
<tr>
<th>Private Activity</th>
<th>Private Businesses</th>
<th>All Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>No Sweat</td>
</tr>
<tr>
<td>Output</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>–0.1</td>
<td></td>
</tr>
<tr>
<td>Owner hours, production</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>Owner hours, sweat</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>Sweat capital</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Fixed asset investment</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Employee hours</td>
<td>–3.9</td>
<td></td>
</tr>
<tr>
<td>Measured TFP</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Measured markups</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Average business age</td>
<td>8.0</td>
<td></td>
</tr>
</tbody>
</table>

Significant % of change is intensive margin
Lower Rates on Businesses (% Changes)

<table>
<thead>
<tr>
<th>Private Activity</th>
<th>Private Businesses</th>
<th>All Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>No Sweat</td>
</tr>
<tr>
<td>Output</td>
<td>2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Sales</td>
<td>–0.1</td>
<td>–0.5</td>
</tr>
<tr>
<td>Owner hours, production</td>
<td>13.8</td>
<td>–</td>
</tr>
<tr>
<td>Owner hours, sweat</td>
<td>11.1</td>
<td>–</td>
</tr>
<tr>
<td>Sweat capital</td>
<td>8.5</td>
<td>–</td>
</tr>
<tr>
<td>Fixed asset investment</td>
<td>0.3</td>
<td>–0.5</td>
</tr>
<tr>
<td>Employee hours</td>
<td>–3.9</td>
<td>–0.6</td>
</tr>
<tr>
<td>Measured TFP</td>
<td>5.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Measured markups</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Average business age</td>
<td>8.0</td>
<td>–2.1</td>
</tr>
</tbody>
</table>

Small effects because T^b doesn’t impact intensive margin
Lower Rates on Businesses (% Changes)

<table>
<thead>
<tr>
<th>Private Activity</th>
<th>Private Businesses</th>
<th>All Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>No Sweat</td>
</tr>
<tr>
<td>Output</td>
<td>2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Sales</td>
<td>−0.1</td>
<td>−0.5</td>
</tr>
<tr>
<td>Owner hours, production</td>
<td>13.8</td>
<td>−</td>
</tr>
<tr>
<td>Owner hours, sweat</td>
<td>11.1</td>
<td>−</td>
</tr>
<tr>
<td>Sweat capital</td>
<td>8.5</td>
<td>−</td>
</tr>
<tr>
<td>Fixed asset investment</td>
<td>0.3</td>
<td>−0.5</td>
</tr>
<tr>
<td>Employee hours</td>
<td>−3.9</td>
<td>−0.6</td>
</tr>
<tr>
<td>Measured TFP</td>
<td>5.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Measured markups</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Average business age</td>
<td>8.0</td>
<td>−2.1</td>
</tr>
</tbody>
</table>

Large differences in effects on time use and age
Lower Rates on Businesses (% Changes)

<table>
<thead>
<tr>
<th></th>
<th>Private Businesses</th>
<th></th>
<th>All Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline No Sweat</td>
<td></td>
<td>Baseline No Sweat</td>
</tr>
<tr>
<td>C corporations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>0.3</td>
<td>−0.7</td>
<td>13.5</td>
</tr>
<tr>
<td>Employee hours</td>
<td>−0.3</td>
<td>−0.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Fixed asset investment</td>
<td>0.3</td>
<td>−0.1</td>
<td>24.4</td>
</tr>
<tr>
<td>Other aggregates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage rate</td>
<td>0.6</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Interest rate</td>
<td>−0.9</td>
<td>−0.1</td>
<td>−14.2</td>
</tr>
<tr>
<td>GDP</td>
<td>−0.1</td>
<td>−0.5</td>
<td>8.1</td>
</tr>
<tr>
<td>Total hours</td>
<td>1.5</td>
<td>−0.7</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Tax on C-corporate profits most relevant for aggregates
Decompose Private Business Tax Changes

- Sort population by a, κ, or z

- Compute contributions of tax change for subgroups

\Rightarrow Results differ significantly
Example: Decompose $\Delta n_p / \Delta T^b'$

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Assets (a)</th>
<th>Sweat (κ)</th>
<th>Productivity (z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>-0.53</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>-1.38</td>
<td>-3.10</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-1.37</td>
<td>-6.04</td>
<td>-0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.43</td>
<td>5.12</td>
<td>-3.89</td>
</tr>
<tr>
<td>Total</td>
<td>-3.94</td>
<td>-3.94</td>
<td>-3.94</td>
</tr>
</tbody>
</table>

- In Lucas, top (a, z) owners contribute most to decline
- Here, low-a, mid-κ, high-z owners do
Taxing Labor

- Large differences in
 - Effective tax rates
 - Effects of tax changes

across labor inputs (owners vs. employees)
Effective Rates on Labor

• Estimates of tax misreporting
 ○ 57% for sole proprietors
 ○ 53% for partnerships
 ○ 18% for S corporations

⇒ Large pecuniary benefits to business ownership
Marginal Rates on Labor

![Graph showing marginal rates on labor]
Lower Rates on Businesses vs. Wages

- Effects on private businesses:

<table>
<thead>
<tr>
<th></th>
<th>Lower $T^{b'}$</th>
<th>Lower $T^{w'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-employment</td>
<td>3.3</td>
<td>−9.5</td>
</tr>
<tr>
<td>Employee hours</td>
<td>−3.9</td>
<td>14.2</td>
</tr>
<tr>
<td>Owner time producing</td>
<td>13.8</td>
<td>−6.2</td>
</tr>
<tr>
<td>Owner time building</td>
<td>11.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- $T^{b'}$ ↓: More owners doing more of both tasks
- $T^{w'}$ ↓: Fewer owners running larger-scale businesses
Summary

- Value of private business sweat equity \((V_b)\)
 - Similar magnitude to value of fixed assets
 - Little dispersion in \(V_b\) \(\Rightarrow\) high dispersion in returns

- Tax experiments show:
 - Large sectoral and aggregate effects
 - Abstracting from sweat leads to wrong answers
Appendix
Evidence from Widely-Used Surveys

- Bhandari, Birinci, McGrattan, & See (2018) analyzed:
 - Survey of Consumer Finances (SCF)
 - Panel Surveys of Income Dynamics (PSID)
 - Survey of Income and Program Participation (SIPP)
 - Current Population Survey (CPS)
- Found inconsistent with IRS, across surveys, across years
• Can compare survey responses directly to IRS data
 ○ Total adjusted gross incomes (AGI) match
 ○ Business net incomes do not

• Households with business income asked

 What was the business’s total net income before taxes?

 Partnership: IRS Form 1065, Line 22

 Sole proprietorship: IRS Form 1040, Sch. C, Line 31

 S-corporation: IRS Form 1120S, Line 21
Standard Arguments for Overstatement

• Many business owners:
 ○ Do hardly anything
 ○ Lie on taxes but not on surveys
 ○ Confuse Schedules C, E, and F

• If true, no issues with current survey designs
Standard Arguments for Overstatement

- Many business owners:
 - Do hardly anything
 - Lie on taxes but not on surveys
 - Confuse Schedules C, E, and F

- If true, no issues with current survey designs

- But, all can be rejected
Eg, Adjusting for Misreporting
Implications for Valuations & Returns

- SCF owners asked for value of ongoing businesses

- Value-weighted income yields:
 - 19% SCF
 - 8% CRSP, all firms
 - 2% Pratt’s Stats
 - −8% CRSP, lowest asset quintile

- Value-weighted capital gains: not comparable
Implications for Valuations & Returns

- SCF owners asked for value of ongoing businesses

- Value-weighted income yields:
 - 19% SCF
 - 8% CRSP, all firms
 - 2% Pratt’s Stats
 - -8% CRSP, lowest asset quintile

- Value-weighted capital gains: not comparable

- *Bottom line*: Need theory to derive implications