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1. Introduction

In these notes, we provide additional details for the various versions of the model that we have

studied. We start with the dynastic model that extends Aiyagari (1994) to include occupational

choice and production by both C corporations and private pass-through entities. We show how

to solve the set of static first order conditions as a fixed point in a single variable—which is the

problem at the core of each call to the dynamic programming routine. We then extend the model

to include life-cycle dynamics, assuming stochastic transitions between youth and old age, and

business sales. The final section, is a baseline Lucas span-of-control model typical of the literature

on entrepreneurship.

2. Dynastic Model

Individuals start each period with state vector s = (a, κ, ǫ, z) that summarizes their financial

asset holdings (a), their sweat capital stock (κ), their productivity if they choose to work as

an employee (ǫ), and their productivity if they choose to run a private, pass-through business

themselves (z). The value of working is Vw(s) and the value of being a private business owner is

Vp(s). Assuming individuals optimize when making their occupational choice, it must be the case

that the value of being in state s is

V (s) = max{Vw (s) , Vp (s)}.

2.1. Worker’s problem

Let’s start by describing the dynamic program solved by workers. Workers choose consumption

produced in the two sectors, cc and cp, respectively, leisure ℓ, and financial assets next period, a′,

to to solve the following dynamic program:

Vw (s) = max
cc,cp,ℓ,a′

{U (c, ℓ) + β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) V (s′)} (2.1)

subject to

a′ = [(1 + r) a+ wǫn− (1 + τc) (cc + pcp)− Tn (wǫn)] / (1 + γ)
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κ′ = (1− λ)κ

c = c (cc, cp)

ℓ = 1− n

a′ ≥ a

n ∈ [0, 1] .

These households take as given the after-tax interest rate r, the before-tax wage rate w, the price of

private goods p, the consumption tax rate τc, and the net tax function on labor earnings Tn. When

comparing the model and data, we also add (exogenous) nonbusiness earnings ȳnb less investments

x̄nb to government transfers when specifying Tn.

2.2. Business owner’s problem

Next, consider the problem of the small business owner with value function Vp. The dynamic

program is:

Vp (a, κ, ǫ, z) = max
cc,cp,hy,hκ,e,

kp,np,a′,κ′

{U (c, ℓ) + β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) V (a′, κ′, ǫ′, z′)} (2.2)

subject to

a′ = [(1 + r) a+ pyp − (rp + δk) kp − e− wnp − (1 + τc) (cc + pcp)

− T b (pyp − (rp + δk) kp − e− wnp)]/ (1 + γ)

κ′ =
[

(1− δκ)κ+ ςhϑκe
1−ϑ
]

/ (1 + γ)

yp = zkαp κ
φ
(

ωhρy + (1− ω)nρp
)

ν
ρ , α + φ+ ν = 1

c =
(

ηc̺c + (1− η) c̺p
)1/̺

ℓ = 1− hκ − hy

a′ ≥ χkp

kp ≥ 0

ℓ ∈ [0, 1] ,

taking as given the after-tax interest rate r, the before-tax wage rate w, the price of private goods

p, the consumption tax rate τc, and the net tax function on business income T b. Here again, we

assume nonbusiness earnings and investments are included with transfers when specifying T b.
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2.3. C corporate problem

There is a competitive C-corporate sector with firms choosing hours nc and fixed assets kc to

solve the following dynamic program:

vc (kc) = max
nc,k′

c

{(1− τd) dc +
(1 + γ)

(1 + r)
vc (k

′
c)}

subject to

k′c = [(1− δk) kc + xc] / (1 + γ)

yc = AF (kc, nc)

dc = yc − wnc − xc − τp (yc − wnc − δkkc)

where dc are corporate dividends that are taxed at rate τd after paying corporate income taxes

at rate τp, xc is C-corporate investment, and yc is C-corporate output from a constant returns to

scale technology F with TFP given by A. Employees working for C corporations earn the same

hourly wage w as employees in private businesses.

2.4. Financial intermediary

There is a competitive intermediation sector with risk-neutral financial intermediaries that

accept deposits and use the funds to invest in C-corporate equities, government bonds, and fixed

assets.

At the beginning of each period, the net worth of an intermediary is the value of its equity

shares ς, bonds b, and fixed assets k, less the value of deposits owed to households a. During

the period, the intermediary receives dividend income from C corporations, interest income from

bonds, and rental income on fixed assets and pays interest on deposits. The dynamic program in

this case is:

vI (x) = max
x′

{dI +

(

1 + γ

1 + r

)

vI (x
′)}, (2.3)

where the state vector is x = [ς, b, k, a]′ and the intermediary dividends are:

dI = qς +

∫

kp (s)µ (s) ds+ b−

∫

a (s)µ (s) ds

+ (1− τd) dcς + rb+ (r + δk)

∫

kp (s)µ (s) ds− r

∫

a (s)µ (s) ds

− (1 + γ)

[

qς ′ + b′ −

∫

a′ (s)µ (s) ds

]

−

∫

xp (s)µ (s) ds
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where µ(s) is the measure of type s individuals and q is the per-share price of corporate equities.

2.5. Government budget constraint

The government spends g, borrows b and collects taxes on consumption, labor earnings, pass-

through earnings, dividends, and profits. In a stationary equilibrium, the government budget

constraint is given by:

g + (r − γ) b = τc

(∫

cc (s)µ (s) ds+

∫

pcp (s)µ (s) ds

)

+ τp (yc − wnc − δkkc)

+ τd (yc − wnc − (γ + δk) kc − τp (yc − wnc − δkkc))

+

∫

T b (pyp (s)− (rp + δk) kp (s)− e (s)− wnp (s))µ (s) ds

+

∫

Tn (wǫ (s)n (s))µ (s) ds

2.6. Market clearing conditions

The market clearing conditions are now:

yc =

∫

(cc (s) + e (s))µ (s) ds+ (γ + δk)

(

kc +

∫

kp (s)µ (s) ds

)

+ g + x̄nb − ȳnb

nc =

∫

(n (s) ǫ (s)− np (s))µ (s) ds

∫

a (s)µ (s) ds = b+ (1− τd) kc +

∫

kp (s)µ (s) ds

∫

yp (s)µ (s) ds =

∫

cp (s)µ (s) ds,

2.7. Equilibrium

A stationary recursive competitive equilibrium is: value functions Vw, Vp; policy functions a′,

κ′, cc, cp, ℓ, n, kp, np, hy, hκ, and e; C corporation choices nc, kc; prices r, w, p; and a measure

over types indexed by the state s such that

• given prices, the policy functions for employees, namely, a′, κ′, cc, cp, ℓ, n solve dynamic

programming problem associated with value function Vw;
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• given prices, the policy functions for private business owners, namely, a′, κ′, cc, cp, ℓ, kp, np,

hy, hκ, e solve dynamic programming problems associated with value function Vp;

• given prices, the policy functions for C corporations, namely, nc and k′c solve the dynamic

programming problem associated with vc;

• given prices, the policy functions for financial intermediaries namely, x = [ς, b, k, a]′ solve the

dynamic programming problem associated with vI ;

• the labor market clears: nc =
∫

(n(s)ǫ(s)− np(s))µ(s) ds;

• the asset market clears:
∫

a(s)µ(s) ds = b+ (1− τd)kc +
∫

kp(s)µ(s) ds;

• the private business goods market clears:
∫

yp(s)µ(s) ds =
∫

cp(s)µ(s) ds;

• the C-corporate goods market clears:

yc =

∫
(

cc (s) +

∫

e (s)

)

µ (s) ds+ (γ + δk)

(

kc +

∫

kp (s)µ (s) ds

)

+ g;

• the government budget constraint is satisfied;

• the measure of types over states (a, κ, ǫ, z) is invariant.

We should note that in equilibrium, returns on all uses of funds will be equated and the equity

price is q = 1 − τd. Let the return on equity from t − 1 to t be denoted by ret. Then, from the

intermediary optimization, we have

ret =
qt + (1− τd) dt

qt−1
− 1,

which must be equal to rpt − δk and to rt, or in the stationary distribution re = rp − δk = r.

Similarly, from the C-corporate optimization, we have the return on capital

rk = (1− τp) (AFk (kc, nc)− δk) ,

which must be equal to r and re. If we normalize aggregate shares to 1, it follows that the stock

value is

q = (1− τd) kc.

Furthermore, if there is free entry in the intermediary sector, it must be the case that the net

worth nw is zero. From that, we get the asset market clearing constraint above.
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2.8. Calculations for easier computation

If we use the following functional forms for utility and consumption, namely,

U (c, ℓ) =
(

c1−ψℓψ
)1−σ

/ (1− σ) (2.4)

c (cc, cp) =
(

ηc̺c + (1− η) c̺p
)

1
̺ , (2.5)

then the first-order conditions for cc, cp, and n of the worker are given by

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓψ(1−σ)
[

ηc̺−1
c c1−̺

]

− (1 + τc)ϕ (2.6)

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓψ(1−σ)
[

(1− η) c̺−1
p c1−̺

]

− p (1 + τc)ϕ (2.7)

0 = −ψc(1−ψ)(1−σ)ℓψ(1−σ)−1 + wǫ (1− ∂Tn/∂y)ϕ (2.8)

where y = wǫn and

ϕ = β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Va (a
′, κ′, ǫ′, z′) / (1 + γ) .

In this problem, we assume that variables are stationary so the discount factor β̃ has been adjusted

by the growth rate of TFP, which is γ. With the utility function in (2.4), the adjusted discount

factor is equal to β̃ = β(1 + γ)1−σ , where β is the original discount factor.

Taking the ratio of (2.6) and (2.7) and simplifying, we get

cp
cc

=

(

ηp

1− η

)
1

̺−1

≡ ξ1, (2.9)

or cp = ξ1cc, which allows us to write total consumption expenditures in terms of corporate

consumption:

cc + pcp = (1 + pξ1) cc. (2.10)

The consumption bundle can also be written in terms of cc:

c =

(

η + (1− η)

(

ηp

1− η

)

̺
̺−1

)1/̺

cc ≡ ξ2cc. (2.11)

To derive a value for n, we need to specify the net transfer function Tn. The most flexible

and tractable choice is a piecewise linear function:

T (y) = τiy − tri

∂T (y) /∂y = τi
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for y in income bracket i, where tri includes government transfers and nonbusiness incomes less

investment (ȳnb − x̄nb).
1

Taking the ratio of (2.6) and (2.8) and using the definition of ξ2, we get

cc =

(

(1− ψ) η

ψξ̺2 (1 + τc)

)

wǫ (1− ∂Tn/∂y) (1− n)

≡ ξ3wǫ (1− τni) (1− n) (2.12)

assuming the individual is in income bracket i. From the budget constraint, we can write cc as

follows:

cc =
(1 + r) a− (1 + γ) a′ + (1− τni)wǫn+ trni

(1 + pξ1) (1 + τc)

≡ ξ4a− ξ5a
′ + ξ6 ((1− τni)wǫn + trni) , (2.13)

again assuming that the income wǫn puts the individual in bracket i.

Equating (2.12) and (2.13) gives us a linear equation in n (if we know the tax bracket i):

n =
ξ3wǫ (1− τni)− ξ4a+ ξ5a

′ − ξ6trni
(ξ3 + ξ6) (1− τni)wǫ

To figure out the bracket, we evaluate Tn(wǫn) for each guess of i.

Next, consider writing out equations for the business owner’s problem. For now, let’s write

the equations assuming that χ = 0. Later, we’ll rewrite them assuming the constraint is binding.

Taking derivatives of the right-hand side of the Bellman equation, with respect to cc, cp, hy, hκ,

e, kp, and np, we get:

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓψ(1−σ)
[

ηc̺−1
c c1−̺

]

− (1 + τc)ϕa (2.14)

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓψ(1−σ)
[

(1− η) c̺−1
p c1−̺

]

− p (1 + τc)ϕa (2.15)

0 = −ψc(1−ψ)(1−σ)ℓψ(1−σ)−1

1 We also explored the two-parameter function T (y) = y − (1 − τn)y1−pn , where pn governs the progressivity
and τn governs the level. This choice has two disadvantages. First, this function is difficult to parameterize
across a wide state space. Second, this function gives rise to multiple solutions over some regions of the state
space when we compute owner hours.
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+ ϕaνω
pyp
hy

hρy
[ωhρy + (1− ω)nρp]

(

1− ∂T b/∂y
)

(2.16)

0 = −ψc(1−ψ)(1−σ)ℓψ(1−σ)−1 + ϕκςϑ (e/hκ)
1−ϑ

(2.17)

0 = −ϕa
(

1− ∂T b/∂y
)

+ ϕκς (1− ϑ) (hκ/e)
ϑ

(2.18)

0 = pαyp/kp − rp − δk (2.19)

0 = ν (1− ω)
pyp
np

nρp
[ωhρy + (1− ω)nρp]

− w (2.20)

where

ϕa = β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Va (a
′, κ′, ǫ′, z′) / (1 + γ)

ϕκ = β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vκ (a
′, κ′, ǫ′, z′) / (1 + γ) .

Let’s first consider the case with no sweat capital and κ = hy = kp = np = 0. In this case, we

only need to solve the following equations for cc, hκ, and e assuming income falls in bracket i:

cc =
(1− ψ) η

ψξ̺2 (1 + τc)

ϑe

(1− ϑ)hκ
(1− τbi) (1− hκ) (2.21)

cc =

(

(1 + r) a− (1 + γ) a′ + trbi
(1 + pξ1) (1 + τc)

)

−

(

1− τbi
(1 + pξ1) (1 + τc)

)

e (2.22)

e =

(

(1 + γ)κ′

ς

)
1

1−ϑ

h
− ϑ

1−ϑ
κ (2.23)

where cp = ξ1cc as before. We can equate the cc equations and subtitute in for e. That leaves us

with one equation in one unknown, namely, hκ:

α1 (1− hκ) = α2h
1

1−ϑ
κ − α3hκ (2.24)

where

α1 =
(1− ψ) η

ψξ̺2 (1 + τc)

α2 =
(1− ϑ) (ξ4a− ξ5a

′ + ξ6trbi)

ϑ ((1 + γ)κ′/ζ)
1

1−ϑ

1

1− τbi

α3 =
1− ϑ

ϑ (1 + pξ1) (1 + τc)
.
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At each step of the bisection, we need to figure out the tax bracket i in order to evaluate the

α’s. The term α1(1 − hκ) on the left-hand side is positive for hκ = 0 and zero for hκ = 1. The

right-hand side is zero at hκ = 0 and crosses the left-hand side once if α2 > α3. If ϑ ∈ (0, 1), we

can ensure that a Newton iteration will converge for any point between h∗κ and 1, where

h∗κ =

(

α3 (1− ϑ)

α2

)
1−ϑ
ϑ

.

This point is the minimum of the right-hand side of (2.24). Alternatively, we could pick the point

where the right-hand side is zero because the curve has to cross zero before crossing the downward

sloping line. In this case:

h∗κ =

(

α3

α2

)
1−ϑ
ϑ

.

Notice that in either case, α2 has to be greater than zero. Otherwise, there is no fixed point in the

interval [0,1].

Next consider the case with positive sweat capital (κ > 0). In this case, it will turn out to be

relatively simple to solve the problem if we we introduce a new variable h̃y:

h̃y =
(

ωhρy + (1− ω)nρp
)

1
ρ .

Specifically, we can show that solving the static first-order conditions boil down to solving a fixed

point problem in h̃y. To do this, we first write np as a function of h̃y and kp:

np =

(

ν (1− ω) (rp + δk)

αw

kp

h̃ρy

)
1

1−ρ

≡ ξ7

(

kp

h̃ρy

)
1

1−ρ

assuming ρ < 1. Given np, we can write kp and yp as follows:

kp =

(

αpzκφ

rp + δk

)

1
1−α

h̃
ν

1−α
y = ξ8z

1
1−ακ

φ

1−α h̃
ν

1−α
y

yp = zkαp κ
φh̃νy = ξα8 z

1
1−α κ

φ

1−α h̃
ν

1−α
y

Notice that we now have both h̃y and hy in the equations. If we know h̃y, then we can compute

kp and np and therefore, hy:

hy =

(

h̃ρy − (1− ω)nρp
ω

)
1
ρ
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=







h̃ρy − (1− ω) ξρ7k
ρ

1−ρ
p h̃

− ρ2

1−ρ
y

ω







1
ρ

=







1− (1− ω) ξρ7

(

ξ8
(

zκφ
)

1
1−α

)

ρ
1−ρ

h̃
( ν

1−α
−ρ)( ρ

1−ρ )−ρ
y

ω







1
ρ

h̃y (2.25)

This is a big mess but we can just write hy(h̃y) below.

Given the substitutions we have already made, the first-order conditions can be written inter-

mediately as four equations in cc, h̃y, hκ, and e:

cc =

(

(1− ψ) ηνωpξα8 z
1

1−α κ
φ

1−α (1− τbi)

ψξ̺2 (1 + τc)

)

h̃
ν

1−α
−ρ

y hy

(

h̃y

)ρ−1 (

1− hy

(

h̃y

)

− hκ

)

= ξ9 (1− τbi)
(

zκφ
)

1
1−α h̃

ν
1−α

−ρ
y hy

(

h̃y

)ρ−1 (

1− hy

(

h̃y

)

− hκ

)

(2.26)

cc =

(

(1 + r) a− (1 + γ) a′ + trbi
(1 + pξ1) (1 + τc)

)

+

(

pξα8 − (rp + δk) ξ8
(1 + pξ1) (1 + τc)

)

(1− τbi)
(

zκφ
)

1
1−α h̃

ν
1−α
y

−

(

1

(1 + pξ1) (1 + τc)

)

(1− τbi) e

−





wξ7ξ
1

1−ρ

8

(1 + pξ1) (1 + τc)



 (1− τbi)
(

zκφ
)

1
(1−α)(1−ρ) h̃

( ν
1−α

−ρ)( 1
1−ρ )

y

≡ ξ4a− ξ5a
′ + ξ6trbi + ξ10 (1− τbi)

(

zκφ
)

1
1−α h̃

ν
1−α
y − ξ11 (1− τbi) e

− ξ12 (1− τbi)
(

zκφ
)

1
(1−α)(1−ρ) h̃

( ν
1−α

−ρ)( 1
1−ρ )

y (2.27)

ςhϑκe
1−ϑ = (1 + γ)κ′ − (1− δκ)κ (2.28)

εe

ϑhκ
= (νωpξα8 )

(

z
1

1−ακ
φ

1−α

)

h̃
ν

1−α
−ρ

y hy

(

h̃y

)ρ−1

. (2.29)

Equations (2.28) and (2.29) can be combined to get hκ:

e =

(

1− ϑ

ϑ
νωpξα8

)

(

zκφ
)

1
1−α h̃

ν
1−α

−ρ
y hy

(

h̃y

)ρ−1

hκ
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= ξ13
(

zκφ
)

1
1−α h̃

ν
1−α

−ρ
y hy

(

h̃y

)ρ−1

hκ (2.30)

hκ =







(

1
ζ
((1 + γ)κ′ − (1− δκ)κ)

)
1

1−ϑ

ξ13 (zκφ)
1

1−α







1−ϑ

(

h̃
ν

1−α
−ρ

y hy

(

h̃y

)ρ−1
)ϑ−1

. (2.31)

For ease of notation below, define the function g(x) to be:

g (x) =
(

x
ν

1−α
−ρhy (x)

ρ−1
)ϑ−1

.

If we multiply (2.26) and (2.27) by h̃
ρ− ν

1−α
y hy(h̃y)

1−ρ, equate them, use the equations (2.30)

and (2.31) for e and hκ, and divide all terms by (zκφ)
1

1−α , then we have:

α1

(

1− hy

(

h̃y

)

− α5g
(

h̃y

))

=

(

α2h̃
− ν

1−α
y − α6h̃

( ν
1−α

−ρ)( ρ

1−ρ )−ρ
y + α3

)

h̃ρyhy

(

h̃y

)1−ρ

− α4g
(

h̃y

)

(2.32)

where

α1 = ξ9

α2 =
ξ4a− ξ5a

′ + ξ6trbi

(1− τbi) (zκφ)
1

1−α

α3 = ξ10

α4 = ξ11ξ13α5

α5 =







(

1
ζ ((1 + γ)κ′ − (1− δκ)κ)

)
1

1−ϑ

ξ13 (zκφ)
1

1−α







1−ϑ

.

α6 = ξ12
(

zκφ
)( 1

1−α )(
ρ

1−ρ )

In the case of κ = 0, we can again use (2.24) to find hκ.

Next, we consider making a good guess for the bounds on h̃y. We’ll bound this using the

values of h̃y associated with hy = 0 and hy = 1. To ease notation, let

ξ14 = (1− ω) ξρ7

(

ξ8
(

zκφ
)

1
1−α

)

ρ
1−ρ

.
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Let’s start with the lower end. From (2.25), we find the lower bound by setting:

h̃lby = ξ

1

−( ν
1−α

−ρ)( ρ
1−ρ )+ρ

14 .

At this value, hy = 0 and the residual equation is equal to α1 > 0.

For the upper bound, we could solve

1 = ξ14h̃
( ν

1−α
−ρ)( ρ

1−ρ )−ρ
y + ωh̃−ρy

or we could take the maximum of the two terms on the right hand side, which puts a cap on h̃y.

Then, the upper bound is:

h̃uby = max

(

(ξ14 + ω)
1
ρ , (ξ14 + ω)

1

−( ν
1−α

−ρ)( ρ
1−ρ )+ρ

)

.

We can compute h̃y assuming the constraint on a′ does not bind and then check if a′ < χkp.

Suppose it is. In this case, the equations change as follows. We replace (2.19) with:

kp = a′/χ.

In this case, we need to change ξ7:

np =

(

ν (1− ω) pkαp
w

)

1
1−ρ

h̃
ν−ρ
1−ρ
y

= ξ7
(

zκφ
)

1
1−ρ h̃

ν−ρ

1−ρ
y

and drop ξ8 since yp can be written directly in terms of the unknown h̃y:

yp = kαp zκ
φh̃νy .

The new expression for hy(h̃y) is:

hy =









h̃ρy − (1− ω)

[

ξ7
(

zκφ
)

1
1−ρ h̃

ν−ρ
1−ρ
y

]ρ

ω









1
ρ
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The equations for cc, h̃y, hκ and e are now:

cc =

(

(1− ψ) ηνωpzκφkαp (1− τbi)

ψξ̺2 (1 + τc)

)

h̃ν−ρy hy

(

h̃y

)ρ−1 (

1− hy

(

h̃y

)

− hκ

)

= ξ9 (1− τbi) zκ
φh̃ν−ρy hy

(

h̃y

)ρ−1 (

1− hy

(

h̃y

)

− hκ

)

(2.33)

cc =

(

(1 + r) a− (1 + γ) a′ + trbi
(1 + pξ1) (1 + τc)

)

−

(

1

(1 + pξ1) (1 + τc)

)

(1− τbi) e

+

(

pkαp
(1 + pξ1) (1 + τc)

)

(1− τbi) zκ
φh̃νy

−

(

(rp + δk) kp
(1 + pξ1) (1 + τc)

)

(1− τbi)

−

(

wξ7
(1 + pξ1) (1 + τc)

)

(1− τbi)
(

zκφ
)

1
1−ρ h̃

ν−ρ

1−ρ
y

≡ ξ4a− ξ5a
′ + ξ6trbi − ξ11 (1− τbi) e+ ξ10 (1− τbi) zκ

φh̃νy

− ξ12 (1− τbi)
(

zκφ
)

1
1−ρ h̃

ν−ρ
1−ρ
y (2.34)

ςhϑκe
1−ϑ = (1 + γ)κ′ − (1− δκ)κ (2.35)

ϑe

(1− ϑ)hκ
= νωpkαp zκ

φh̃ν−ρy hy

(

h̃y

)ρ−1

. (2.36)

Combining (2.35) and (2.36) yields:

e =

(

1− ϑ

ϑ
νωpkαp

)

zκφh̃ν−ρy hy

(

h̃y

)ρ−1

hκ

= ξ13zκ
φh̃ν−ρy hy

(

h̃y

)ρ−1

hκ (2.37)

hκ =







(

1
ζ ((1 + γ)κ′ − (1− δκ)κ)

)
1

1−ϑ

ξ13zκφ







1−ϑ

(

h̃ν−ρy hy

(

h̃y

)ρ−1
)ϑ−1

. (2.38)

The function g(x) has to be replaced by:

g (x) =
(

xν−ρhy (x)
ρ−1
)− ϑ

ϑ+ε

.
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If we multiply (2.33) and (2.34) by h̃ρ−νy hy(h̃y)
1−ρ, equate them, use the equations (2.37) and

(2.38) for e and hκ, and divide all terms by zκφ, then we have:

α1

(

1− hy

(

h̃y

)

− α5g
(

h̃y

))

=

(

α2h̃
−ν
y − α6h̃

(ν−ρ)( ρ
1−ρ )−ρ

y + α3

)

h̃ρyhy

(

h̃y

)1−ρ

− α4g
(

h̃y

)

(2.39)

where

α1 = ξ9

α2 =
ξ4a− ξ5a

′ + ξ6trbi
(1− τbi) zκφ

α3 = ξ10

α4 = ξ11ξ13α5

α5 =







(

1
ζ ((1 + γ)κ′ − (1− δκ)κ)

)
1

1−ϑ

ξ13zκφ







1−ϑ

.

α6 = ξ12
(

zκφ
)

ρ

1−ρ

3. Add Life-Cycle Dynamics

Now we allow for young and old agents that face the probability of aging (that is, transiting

from young to old) and the probability of death (that is, replacing an old by a young offspring).

For both young and old, there is a choice of running a business or working for others, so the value

functions must satisfy:

Vy (a, κ, ǫ, z) = max{Vy,w (a, κ, ǫ, z) , Vy,p (a, κ, ǫ, z)}

Vo (a, κ, ǫ, z) = max{Vo,w (a, κ, ǫ, z) , Vo,p (a, κ, ǫ, z)}.

In this version, young businesses solve:

Vy,p (a, κ, ǫ, z) = max
cc,cp,kp,hy,hκ,a′,κ′

{U (c, ℓ)

+ β̃πy
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vy (a
′, κ′, ǫ′, z′)

+ β̃ (1− πy)
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vo (a
′, κ′, ǫ′, z′)}
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subject to

a′ = [(1 + r) a+ pyp − (rp + δk) kp − wnp − e− (1 + τc) (cc + pcp)

− T b (pyp − (rp + δk) kp − e) + ȳnb − x̄nb]/ (1 + γ)

κ′ =
[

(1− δκ)κ+ ςhϑκe
1−ϑ
]

/ (1 + γ)

yp = zkαp κ
φ
(

ωhρy + (1− ω)nρp
)

ν
ρ , α + φ+ ν = 1

c =
(

ηc̺c + (1− η) c̺p
)1/̺

ℓ = 1− hκ − hy

a′ ≥ χkp

kp ≥ 0

ℓ ∈ [0, 1] .

The old businesses solve:

Vo,p (a, κ, ǫ, z) = max
cc,cp,kp,hy,hκ,a′,κ′

{U (c, ℓ)

+ β̃πo
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vo (a
′, κ′, ǫ′, z′)

+ β̃ι (1− πo)
∑

ǫ′,z′

π (ǫ′, z′)Vy (a
′, κ′, ǫ′, z′)}

a′ = [(1 + r) a+ pyp − (rp + δk) kp − wnp − e− (1 + τc) (cc + pcp)

− T b (pyp − (rp + δk) kp − e) + T r]/ (1 + γ)

κ′0 =
[

(1− δκ)κ+ ςhϑκe
1−ϑ
]

/ (1 + γ)

κ′ =

{

κ′0 if old to old

(1− λd)κ
′
0 if old to young

yp = ζozk
α
p κ

φ
(

ωhρy + (1− ω)nρp
)

ν
ρ

c =
(

ηc̺c + (1− η) c̺p
)1/̺

ℓ = 1− hκ − hy

a′ ≥ χkp

kp ≥ 0

ℓ ∈ [0, 1] .
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where ι ∈ [0, 1] is a measure of altruism, ζo is a measure of lowered productivity in old age, and λd

is a measure of business capital that is lost when the owner dies.

The young workers solve:

Vy,w (a, κ, ǫ, z) = max
cc,cp,ℓ,a′

{U (c, ℓ)

+ β̃πy
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vy (a
′, κ′, ǫ′, z′)

+ β̃ (1− πy)
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vo (a
′, κ′, ǫ′, z′)}

subject to

a′ = [(1 + r) a+ wǫn− (1 + τc) (cc + pcp)− Tn (wǫn) + ȳnb − x̄nb] / (1 + γ)

κ′ = λκ

c =
(

ηc̺c + (1− η) c̺p
)1/̺

ℓ = 1− n

a ≥ a

n ∈ [0, 1]

The old workers solve:

Vo,w (a, κ, ǫ, z) = max
cc,cp,ℓ,a′

{U (c, ℓ)

+ β̃πo
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Vo (a
′, κ′, ǫ′, z′)

+ β̃ι (1− πo)
∑

ǫ′,z′

π (ǫ′, z′)Vy (a
′, κ′, ǫ′, z′)}

subject to

a′ = [(1 + r) a+ wǫon− (1 + τc) (cc + pcp)

− Tn (wǫon) + T r + ȳnb − x̄nb]/ (1 + γ)

κ′ = λκ

ǫo = ζoǫ

c =
(

ηc̺c + (1− η) c̺p
)1/̺
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ℓ = 1− n

a ≥ a

n ∈ [0, 1]

where again ζo is a measure of lowered productivity in old age.

The market clearing conditions are now:

yc =

∫

(cc (s) + e (s))µ (s) ds+ (γ + δk)

(

kc +

∫

kp (s)µ (s)

)

ds+ g + x̄nb − ȳnb

nc =

∫

n (s) ǫ (s)µ (s) ds

∫

a (s)µ (s) ds = b+ (1− τd) kc +

∫

kp (s)µ (s) ds

∫

yp (s)µ (s) ds =

∫

cp (s)µ (s) ds,

and the government budget constraint is:

g + (r − γ) b = τc

∫

(cc (s) + pcp (s))µ (s) ds+ τp (yc − wnc − δkkc)

+ τd (yc − wnc − (γ + δk) kc − τp (yc − wnc − δkkc))

+

∫

T b (pyp (s)− (rp + δk) kp (s)− wnp (s)− e (s))µ (s) ds

+

∫

Tn (wǫ (s)n (s))µ (s) ds− T r
∫

χs,oldµ (s) ds,

where ǫ(s) includes the ζo factor.

The equations used for computing h̃y are the same in this model as in the dynastic model.

The only difference here is some additional parameters in the case of older workers.

4. Add Business Sales

In this section, we introduce business sales, setting us up to eventually match model predictions

to IRS data on Form 8594.

Let’s start with the market arrangement for sale of private businesses. There is an intermediary

who buys and sells sweat capital. All agents have an option to sell their sweat capital. Selling

entails a capital gains tax τcg. Let vκ(s) be the price offered by the intermediary to the buy
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the entire stock of κ(s) from agent with state s. The intermediary raises funds by offering a

homogeneous price quantity bundle (p̄κ, κ̄) to all potential buyers.

Next, consider the timing. The timing is as follows: Agents enter the period with a, κ. After

shocks (z, ǫ) are realized, they decide between the following four options: (1) sell and be a worker;

(2) not sell and be a worker; (3) run a pass-through business without buying new sweat capital; or

(4) buy new sweat capital and then run pass-through business. Notice that the second and third

are what we had before, while the first and fourth options deal with buying and selling. In this

case, the occupational choice is summarized by maximization over the four possible options:

V (s) = max {Vw (s̃) , Vw (s) , Vp (s) , Vp (s̃)} (4.1)

where the elements of state s̃ are defined as follows:

a (s̃) = a (s) II{option 2 or 3} (s)

+ (a (s) + (1− τcg) vκ (s))
(

II{option 1} (s)
)

+ (a (s)− p̄κ)
(

II{option 4} (s)
)

κ (s̃) = κ (s) II{option 2 or 3} (s) + (κ (s) + κ̄)
(

II{option 4} (s)
)

The last two elements of s̃, are given by z(s̃) and ǫ(s̃) and are equal to z(s) and ǫ(s), respectively.

Once the occupational choices are made, agents choose: consumption, savings, leisure, and

conditional on running a business production choices. The formulations of Vw and Vp are un-

changed.

With business sales, we need to modify the defintion of a competitive equilibrium. The

equilibrium definition now includes (vκ(s), p̄κ, κ̄) such that

Vw (s) = Vw (a+ (1− τcg) vκ (s) , 0, z (s) , ǫ (s)) (4.2)

This equation means that (i) the seller has no bargaining power and (ii) and that the intermediary

offers a price that equals the outside option of the seller which I take to be as entering the workforce

and allowing his sweat capital to depreciate at λ.

The exiting entrepreneurs are indifferent between selling their sweat to the intermediary or

holding on to it. We break the tie by requiring πf of the individuals to sell. This is an exogenously
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set parameter and we can pin it down using the SBO data on business acquisitions. Owners are

asked whether they founded, purchased, inherited or received the business as a gift or transfer.

This allows us to determine how many owners built their businesses on their own and how many

purchased bought or inherited someone else’s sweat capital.

The chunk size κ̄ is given by

κ̄ =

∫

κ (s)µ (s)πfII{option 1 or 2} (s) ds (4.3)

The zero profit condition for the intermediary is

p̄κ

∫

II{option 4} (s)µ (s) ds = (1− ψ1)

∫

vκ (s)µ (s)πfII{option 1 or 2} (s) ds (4.4)

Given the sale is a taxable transaction, there will be an additional term in the governments’ budget

constraint, namely,

τcg

∫

vκ (s)µ (s)πfII{option 1 or 2} (s) ds.

In order to compute equilibria, we need to make modifications to the computational algorithm.

Specifically, we’ll need to take the following steps:

• Inner loop: Fix (p, r, w, p̄κ, κ̄)

◦ Guess Vw, Vp

◦ Compute vκ(s) using (4.2). This step is a bit costly and would require a bisection. Treat

vκ(s) in the same way as other value functions and interpolate when simulating.

◦ Compute V (s) using (4.1).

◦ Solve the Bellman optimization problems to update Vw and Vp

• Outer loop: Use market clearing conditions as before and additionally (4.3) to pin down the

additional equilibrium objects (p̄κ, κ̄).

5. Lucas Span of Control

The reference model for our tax experiments is the model of Lucas (1978). This model is a

nested problem with inelastic hours for business owners and no sweat capital κ or expensing e. In
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this case, the young pass-through business owner solves:

Vy,p (a, ǫ, z) = max
cc,cp,kp,a′

{U
(

c, ℓ̄
)

+ β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) V (a′, ǫ′, z′)} (5.1)

subject to

a′ = [(1 + r) a+ pyp − (rp + δk) kp − wnp − (1 + τc) (cc + pcp)

− T b (pyp − (rp + δk) kp − wnp)]/ (1 + γ)

yp = zkαp n
ν
p

c =
(

ηc̺c + (1− η) c̺p
)1/̺

a′ ≥ χkp

kp ≥ 0.

The problem for employees is the same as before except the value function does not depend on κ.

Let’s start by assuming that χ = 0. The first-order conditions for business owners with respect

to cc, cp, and kp are as follows:

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓ̄ψ(1−σ)
[

ηc̺−1
c c1−̺

]

− (1 + τc)ϕa (5.2)

0 = (1− ψ) c(1−ψ)(1−σ)−1ℓ̄ψ(1−σ)
[

(1− η) c̺−1
p c1−̺

]

− p (1 + τc)ϕa (5.3)

0 = pαyp/kp − (rp + δk) (5.4)

0 = pνyp/np − w, (5.5)

where

ϕa = β̃
∑

ǫ′,z′

π (ǫ′, z′|ǫ, z) Va (a
′, ǫ′, z′) / (1 + γ) .

The ratio of (5.2) and (5.5) yields

cp
cc

=

(

ηp

1− η

)
1

̺−1

or cp = ξ1cc as before. Again, we can write out the consumption bundle as

c =

(

η + (1− η)

(

ηp

1− η

)

̺

̺−1

)1/̺

cc ≡ ξ2cc.
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In this case, assuming α+ ν < 1, we have

kp =

(

pzα1−ννν

(rp + δk)
1−ν

wν

)
1

1−α−ν

np =
ν (rp + δk)

αw
kp.

Relative to the baseline model, the static problem is trivial since we do not need to compute hours

in the business.

Now consider the case with χ > 0. We can first solve the static problems assuming χ = 0 and

check if a′ ≥ χkp. If it is not, we replace (5.4) with kp = a′/χ and

np =

(

pνzkαp
w

)
1

1−ν

.
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