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Data sources

Financial data is from the Flow of Funds Accounts of the Federal Reserve Board. We
report the references to the FFA items using the ‘Coded Tables’ released on September
17, 2010. New editions of the Coded Tables may use different coding which should be
taken into account by future uses. All series, financial and real, are seasonally adjusted.

Data source for Figure 1 and Table 1

Equity Payout is ‘Net dividends of nonfarm, nonfinancial business’ (Table F.102, line 3),
plus ‘Net dividends of farm business’ (Table F.7, line 24), minus ‘Net increase in corporate
equities of nonfinancial business’ (F.101, line 35), minus ‘Proprietors’ net investment of
nonfinancial business’ (F.101, line 39). Debt Repurchase is the negative of ‘Net increase
in credit markets instruments of nonfinancial business’ (Table F.101, line 28). Equity
payout and debt repurchase are both divided by business value added from the National
Income and Product Accounts (Table 1.3.5). Total GDP used to compute the correlations
reported in Table 1 is also from NIPA (Table 1.1.6).

Construction of financial shocks

The ξt series are constructed from the enforcement constraint ξt(kt+1 − bet+1) = yt,
where bet+1 = bt+1/ (1 + rt) is the end of period liability. The linearized version of this
constraint can be written as

(1) ξ̂t = φkk̂t+1 + φbb̂
e
t+1 + ŷt,

where φk = −ξ̄k̄/ȳ and φb = ξ̄b̄e/ȳ. The hat sign denotes percent deviations from the
steady state and the bar sign denotes steady state values. After parameterizing the
model using steady state targets (see first set of parameters in Table 2 in the paper), we
determine the coefficients φk = −1.5489 and φb = 0.5489. We can then use the above

equation to construct the ξ̂t series once we have empirical measurements for the end of

period capital, k̂t+1, the end of period liabilities, b̂et+1, and output ŷt. Following is the
description of how we construct these series.

The Capital Stock is constructed using the equation

kt+1 = kt −Depreciation+ Investment.
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Depreciation is measured as ‘Consumption of fixed capital in nonfinancial corporate busi-
ness’ (Table F.8, line 14) plus ‘Consumption of fixed capital in nonfinancial noncorporate
business’ (Table F.8, line 15). Investment is measured as ‘Capital expenditures in nonfi-
nancial business’ (Table F.101, line 4). Both variables are deflated by the price index for
business value added from NIPA (Table 1.3.4). We start the recursion in the first quarter
of 1952. The initial kt is chosen so that the capital-output ratio in the business sector
does not display any trend during the sample period 1952-2010. Since the initial value
of kt is important only for the early dates, this is not relevant for our results based on

the subperiod 1984-2010. The k̂t+1 series used in equation (1) is constructed by linearly
detrending the log of kt+1 over the period 1984.I-2010.II.

The Debt Stock is constructed using the equation

bet+1 = bet +NetNewBorrowing.

Notice that we use the variable bet+1 = bt+1/ (1 + rt) instead bt+1 because this is the
model equivalent of the end-of-period debt reported in the data. Net new borrowing is
measured by the ‘Net increase in credit markets instruments of nonfinancial business’
(Table F.101, line 28). Since the constructed stock of debt is measured in nominal terms,
we deflate it by the price index for business value added from NIPA (Table 1.3.4). The
initial (nominal) stock of debt is set to 94.12, which is the value reported in the balance
sheet data from the Flow of Funds in 1952.I for the nonfarm nonfinancial business (Table
B.102, line 22 and Table B.103, line 24). Since we start the recursion in 1952, the initial
value is not important for the results of the paper based on the subperiod 1984-2010.
We do not use directly the series for the stocks of debt because they are not seasonally

adjusted. The b̂et+1 series used in equation (1) is constructed by linearly detrending the
log of bet+1 over the period 1984.I-2010.II.

For Output we use business value added from NIPA (Table 1.3.5) deflated by the price
index for business value added also from NIPA (Table 1.3.4). This gives us yt. The ŷt
series used in equation (1) is constructed by linearly detrending the log of yt over the
period 1984.I-2010.II.

Construction of productivity shocks

To construct the TFP series from the production function yt = ztk
θ
t n

1−θ
t , we need

three data series: capital kt, labor nt and output yt.
The Capital Stock and Output are constructed through the same procedures as de-

scribed above. Labor is measured as ‘total private aggregate weekly hours’ from the
Current Employment Statistics, national survey.

Data series for the structural estimation

GDP is ‘Real gross domestic product’ from NIPA (Table 1.1.6). Consumption is ‘Real
personal consumption expenditures’ from NIPA (Table 1.1.6). Investment is ‘Real gross
private domestic investment’ from NIPA (Table 1.1.6). Working Hours is ‘total private
aggregate weekly hours’ from the Current Employment Statistics, national survey. Wages
are ‘Real hourly compensation in the business sector’ from the Bureau of Labor Statistics.
Nominal Price is the ‘implicit price deflator for GDP’ from NIPA (Table 1.1.9). Interest
Rate is the ‘Federal fund rate’ published by the Federal Reserve Board. We construct the
quarterly series from the monthly data by averaging over three months. Debt Repurchase
is defined in the data source for Figure 1 and Table 1.
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First order conditions for the firm’s problem

Consider the optimization problem (3) in the paper and let λ and µ be the Lagrange
multipliers for the budget and enforcement constraints. Differentiating we get:

d : 1 − λϕd(d) = 0

n : λFn(z, k, n) − λw − µFn(z, k, n) = 0

k′ : Em′Vk(s′; k′, b′) − λ+ µξ = 0

b′ : Em′Vb(s
′; k′, b′) +

λ

R
− µξ

1 + r
= 0.

The envelope conditions are

Vk(s; k, b) = λ
[
1 − δ + Fk(z, k, n)

]
− µFk(z, k, n),

Vb(s; k, b) = −λ.

Using the first condition to eliminate λ plus the envelope conditions we get equations
(4)-(6) reported in the paper.

Numerical solution

We solve the model using a linear approximation under the assumption that the en-
forcement constraint is always binding. To check the accuracy of the linear solution and
especially the assumption that the enforcement constraint is always binding, we also solve
the model nonlinearly using a global approximation method. The linear and nonlinear
methods are described below.

Linear approximation

If the enforcement constraint is always binding, we can solve the model by log-linearizing
the dynamic system around the steady state. The equilibrium is characterized by the
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following system of dynamic equations:

wUc(c, n) + Un(c, n) = 0,

Uc(c, n) = β

(
R− τ

1 − τ

)
EUc(c

′, n′),

wn+ b− b′

R
+ d− c = 0,

Fn(z, k, n) = w

(
1

1 − µϕd(d)

)
,

E m̃(c, n, d, c′, n′, d′)

[
1 − δ + (1 − µ′ϕd(d

′))Fk(z′, k′, n′)

]
+ ξµϕd(d) = 1,

RE m̃(c, n, d, c′, n′, d′) + ξµϕd(d)

(
R(1 − τ)

R− τ

)
= 1,

(1 − δ)k + F (z, k, n) − wn− b+
b′

R
− k′ − ϕ(d) = 0,

ξ

(
k′ − b′

1 − τ

R− τ

)
= F (z, k, n).

The first three equations are the first order conditions and budget constraint for house-
holds. In equilibrium the tax payments of households is accounted by a lower inter-
est earned on bonds, R, and the gross (before tax) interest rate is 1 + r = (R −
τ)/(1 − τ). The next three equations are the first order conditions for firms. The term
m̃(c, n, d, c′, n′, d′) = β(Uc(c

′, n′)/Uc(c, n))(ϕd(d)/ϕd(d
′)) is the effective discount factor.

The remaining two equations are the firms’ budget and enforcement constraints.
We have eight dynamic equations. After linearizing around the steady state we can

solve the system for the eight variables ct, dt, nt, wt, Rt, µt, kt+1, bt+1, as linear functions
of the states, zt, ξt, kt, bt.

Nonlinear approximation

The nonlinear approach approximates the three conditional expectations in the sec-
ond, fifth and sixth equations with functions that interpolate linearly between the grid
points of the four-dimensional state space (z, ξ, k, b). Starting with initial guesses for the
conditional expectations at the grid points, we can compute all variables of interest by
solving a system of nonlinear equations.

At each grid point, we first solve the system assuming that the enforcement constraint
is binding. If the solution for the multiplier is negative, we set it equal to zero, and then
solve the system ignoring the enforcement constraint. In doing so we essentially check
the Kuhn-Tucker conditions at each grid point. Once we have solved for all of the grid
points, we update the guesses for the conditional expectations and keep iterating until
convergence. The new guesses are produced through Gauss-Hermite quadrature (zt and
ξt are lognormal).

We found that the values of the Lagrange multiplier obtained from the simulation of
the model using the nonlinear solution are almost indistinguishable to those obtained
with the linear solution, after an initial period of adjustment. The same holds true for
output, hours and financial flows.

The solution method described here is also used to solve the version of the model with
an alternative specification of the enforcement constraint (see the sensitivity section in
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the paper). As shown in Figure 9, the Lagrange multiplier for this version of the model
becomes zero in some of the simulation periods.

Deriving the linearized wage equation in the extended model

Differentiating the objective (16) with respect to wj,t we get:

Et

∞∑
s=0

(βω)sγt+s

{
−Uj,3,t+s

υt+s
υt+s − 1

w
− υt+s
υt+s−1−1

j,t

(
1

Wt+s

)− υt+s
υt+s−1

nt+s−

λt+s

(
1

υt+s − 1

)
w
− υt+s
υt+s−1

j,t

(
1

Wt+s

)− υt+s
υt+s−1

nt+s

}
= 0

where the second subscript in the utility function denotes the derivative.
Using the fact that λt+s = U2,t+s, this can be re-arranged as

Et

∞∑
s=0

(βω)sγt+snt+s|tU2,t+s

(
1

vt+s − 1

){
wt
Pt+s

− vt+sΛt+s|t

}
= 0,

where Λj,t+s|t ≡ −Uj,3,t+s|t
U2,t+s

is the marginal rate of substitution for workers that reset

their wage in period t, and nj,t+s|t is the labor supply of a worker that has changed the
wage at time t. The j index can be dropped since all households that reset their wage
at time t will make the same choice. Furthermore, because of separability in the utility
function and the assumption that households can purchase contingent claims, U2,t+s is
the same for all agents independently of whether they are able to reset their wages.

Linearizing the first order condition around the steady state we obtain

Et

∞∑
s=0

(βω)s
[
w

P

∂wj,t
w

− w

P

∂Pt+s
P

− vΛ
∂vt+s
v

− vΛ
∂Λt+s|t

Λ

]
= 0,

which takes into account that in a steady state w/P = W/P = vΛ.
Re-arranging, the log-deviation of the wage, ∂wj,t/w = ŵt, can be written as

ŵt = (1 − βω)Et

∞∑
s=0

(βω)s
[
P̂t+s + v̂t+s + Λ̂t+s|t

]
.

Consider now the marginal rate of substitution in log form, lnΛt+s|t = ln(−U3,t+s) −
lnU2,t+s. Because −U3,t+s = An

1/ε
t+s|t we have

ln Λt+s|t = − lnU2,t+s +
1

ε
lnnt+s|t + lnA.

Replacing nt+s|t by the labor demand (equation (15) in the paper), we obtain

ln Λt+s|t = − lnU2,t+s +
1

ε
lnnt+s −

1

ε

(
υt

υt − 1

)
(lnwt − lnWt+s) + lnA.
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The linearized version is then

Λ̂t+s|t = −Û2,t+s +
1

ε
n̂t+s −

(
υ

(υ − 1)ε

)
ŵt +

(
υ

(υ − 1)ε

)
Ŵt+s.

We can now substitute this term in the linearized equation for the wage. After collecting
terms and re-arranging we get

ŵt = ΦEt

∞∑
s=0

(βω)s
[
P̂t+s + v̂t+s − Û2,t+s +

1

ε
n̂t+s +

(
υ

(υ − 1)ε

)
Ŵt+s

]
,

where Φ = ε(υ−1)(1−βω)
ε(υ−1)+υ .

The linearized wage equation can be written recursively as follows:

ŵt = ΦP̂t + Φv̂t − ΦÛc,t +
Φ

ε
n̂t +

υΦ

(υ − 1)ε
Ŵt + βωEtŵt+1

Using the functional form of the utility function, the marginal utility of consumption in
linearized form can be written as

Û2,t =

(
hσ

1 − h

)
ĉt−1 −

(
σ

1 − h

)
ĉt.

Thus, the final expression for the linearized wage equation is

ŵt = −
(
hσΦ

1 − h

)
ĉt−1 +

(
σΦ

1 − h

)
ĉt + ΦP̂t + Φv̂t +

Φ

ε
n̂t +

υΦ

(υ − 1)ε
Ŵt + βωEtŵt+1.

Extended model

This section of the appendix describes the full set of equations that characterize the
equilibrium of the extended model studied in Section IV of the paper. This extends the
model estimated by Smets and Wouters (2007) by adding financial frictions and financial
shocks. The log-linearized version of the model is estimated structurally using Bayesian
methods. We first derive the first order conditions of the firm and then we provide the
full list of equations.

First order conditions for the firm’s problem

Equation (25) in the paper reports the optimization problem faced by the firm. De-
noting by λ, µ, χ, Q the Lagrange multipliers associated with the four constraints, the
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first order conditions are:

λt =
1

Ptϕd(dt)
,(

1 − µt
λtPt

)
Fl,t =

Wt

Pt
+
χtDl,t

λtPt
,(

1 − µt
λtPt

)
Fu,t =

Ψu,tkt
λtPt

+
χtDu,t

λtPt
,

λtPtGp,t + Emt+1λt+1Pt+1Gp−1,t+1 =
χt
Pt

QtΥi,t + Emt+1Qt+1Υ−i,t+1 = λtPt,

Qt = Emt+1

{
(1 − δ)Qt+1 + λt+1Pt+1

(
Fk,t+1 − Ψ(ut)

)
− µt+1Fk,t+1 − χt+1Dk,t+1

}
+ ξtµt,

1 = RtEmt+1
λt+1

λt
+
µtξt
λtPt

(
Rt

1 + rt

)
.

Dynamic system

We can now list the complete set of dynamic equations. We also provide the list of
variables that enter each individual equation. In reporting the first order conditions for
the firm we eliminate the Lagrange multiplier λt using the condition λt = 1/Ptϕd(dt).

1) Households’ euler equation for bonds:

(1 + rt)Emt+1
Pt
Pt+1

− 1 = 0

f(γt, ct−1, Rt, Pt, ct, γt+1, Pt+1, ct+1) = 0

2) Capital utilization:

(1 − µtϕd,t)Fu,t − Ψu,tktϕd,t − χtDu,tϕd,t = 0

f(zt, ηt, kt, nt, ut, dt, µt, χt) = 0

3) Euler equation for capital:

Emt+1

{
(1 − δ)Qt+1 +

Fk,t+1 − Ψt

ϕd,t+1
− µt+1Fk,t+1 − χt+1Dk,t+1

}
+ ξtµt −Qt = 0

f(γt, ξt, ct−1, ct, µt, Qt, zt+1, γt+1, ηt+1, kt+1, nt+1, ut+1, dt+1, ct+1, µt+1, χt+1, Qt+1) = 0

4) Price of capital:

QtΥi,t + Emt+1Qt+1Υi−1,t+1 −
1

ϕd,t
= 0
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f(ζt, γt, it−1, ct−1, dt, ct, it, Qt, ζt+1, γt+1, ct+1, it+1, Qt+1) = 0

5) Law of motion for capital:

(1 − δ)kt + Υt − kt+1 = 0

f(ζt, it−1, kt, it, kt+1) = 0

6) New wage (linearized):

−
(
hσΦ

1 − h

)
ct−1+

(
σΦ

1 − h

)
ct+ΦPt+Φvt+

Φ

ε
nt+

υΦ

(υ − 1)ε
Wt+βωEtwt+1−wt = 0

where Φ = ε(υ−1)(1−βω)
ε(υ−1)+υ .

f(υt, ct−1, wt,Wt, Pt, nt, ct, wt+1) = 0

7) Wage index: [
ωW

1
1−υt
t−1 + (1 − ω)w

1
1−υt
t

]1−υt
−Wt = 0

f(Wt−1, wt,Wt) = 0

8) Labor demand:

(1 − µtϕd,t)Fn,t −
Wt

Pt
− χtϕd,tDn,t = 0

f(zt, ηt, kt,Wt, Pt, nt, ut, dt, µt, χt) = 0

9) Bond demand:

RtEmt+1

(
Ptϕd,t

Pt+1ϕd,t+1

)
+ ξtµtϕd,t

(
Rt

1 + rt

)
− 1 = 0

f(γt, ξt, ct−1, Rt, Pt, dt, ct, µt, γt+1, Pt+1, dt+1, ct+1) = 0

10) Nominal price:

Pt

[
G2,t + Emt+1

(
ϕd,t
ϕd,t+1

)
G1,t+1

]
− χtϕd,t = 0

f(γt, Pt−1, ct−1, Pt, dt, ct, Yt, χt, γt+1, Pt+1, dt+1, ct+1, Yt+1) = 0

11) Firm’s value:
dt + Emt+1Vt+1 − Vt = 0

f(γt, ct−1, dt, ct, Vt, γt+1, ct+1, Vt+1) = 0

12) Enforcement constraint:

ξt

(
kt+1 −

bt+1

Pt (1 + rt)

)
− Ft = 0
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f(zt, ξt, kt, Rt, Pt, nt, ut, kt+1, bt+1) = 0

13) Firm’s budget:

Pt

[
Ft − Ψtkt

]
+
bt+1

Rt
− bt −Wtnt − PtGt − Ptϕt − Ptit = 0

f(zt, Pt−1, kt, bt,Wt, Rt, Pt, nt, ut, dt, it, Yt, bt+1) = 0

14) Household’s budget:

Wtnt + Ptdt −
bt+1

1 + rt
+ bt − Ptct − Tt = 0

f(bt,Wt, Rt, Pt, nt, dt, ct, Tt, bt+1) = 0

15) Government budget:

PtGt +Bt+1

(
1

R
− 1

1 + rt

)
− Tt = 0

f(Gt, Rt, Pt, Tt, Bt+1) = 0

16) Monetary policy (linearized):

a1rt−1 + a2(Pt − Pt−1) + a3(Yt − Y ∗t ) + a4(Yt−1 − Y ∗t−1) + ςt − rt = 0

where a1 = ρR, a2 = (1 − ρR)ν1, a3 = (1 − ρR)ν2 + ν3, a4 = −ν3.

f(ςt, Rt−1, Pt−1, Yt−1, Rt, Pt, Yt) = 0

17) Output:
Ft − Yt = 0

f(zt, kt, nt, ut, Yt) = 0

18) Debt repurchase:
bt/ (1 + rt−1) − bt+1/ (1 + rt)

Yt
− xt = 0

f(Rt−1, bt, Rt, Yt, xt, bt+1) = 0

Taking into account that 1 + r = (R− τ)/(1 − τ), we can use the linearized version of
these equations to solve for 18 variables (Rt, Pt, ct, nt, ut, dt, µt, χt, xt, Qt, it, wt, Wt,
Yt, Vt, Tt, kt+1, bt+1) as a function of 16 states (zt, ζt, γt, ηt, υt, Gt, ςt, ξt, pt−1, it−1,
ct−1, Wt−1, Rt−1, Yt−1, kt, bt).


