Equations for BQUAH.M

The Blanchard-Quah structural VAR is found as follows. We run regressions of X on lags using OLS:

$$
\begin{equation*}
X_{t}=B_{1} X_{t-1}+B_{2} X_{t-2}+\ldots B_{p} X_{t-p}+v_{t} \tag{1}
\end{equation*}
$$

with $E v_{t} v_{t}^{\prime}=\Omega$ found from the residuals of the equations. Invert (1) to get the Wold:

$$
\begin{equation*}
X_{t}=v_{t}+C_{1} v_{t-1}+C_{2} v_{t-2}+\ldots \tag{2}
\end{equation*}
$$

where the C 's satisfy

$$
I=\left(I-B_{1} L-B_{2} L^{2} \ldots-B_{p} L^{p}\right)\left(I+C_{1} L+C_{2} L^{2}+\ldots\right)
$$

for all values of L.
The Blanchard-Quah (BQ) structural MA is

$$
X_{t}=A_{0} \epsilon_{t}+A_{1} \epsilon_{t-1}+A_{2} v_{t-2}+\ldots
$$

with $A_{0} \epsilon_{t}=v_{t}$ and $A_{j}=C_{j} A_{0}, j \geq 1$.
The identifying restrictions for BQ are $E \epsilon_{t} \epsilon_{t}^{\prime}=I$ and the $(1,1)$ element of $\sum_{j=0}^{\infty} A_{j}$, or equivalently $\left[\sum_{j=0}^{\infty} C_{j}\right] A_{0}$, is equal to 0 . This implies that $A_{0} A_{0}^{\prime}=\Omega$ and the $(1,1)$ element of $S A_{0}$ equals 0 , where $S=\left(I-B_{1}-\ldots-B_{p}\right)^{-1} I$. This in turn implies a system of 4 equations and 4 unknowns:

$$
\begin{align*}
\omega_{11} & =a_{11}^{2}+a_{12}^{2} \tag{3}\\
\omega_{12} & =a_{11} a_{21}+a_{12} a_{22} \tag{4}\\
\omega_{22} & =a_{21}^{2}+a_{22}^{2} \tag{5}\\
0 & =s_{11} a_{11}+s_{12} a_{21} \tag{6}
\end{align*}
$$

where $a_{i j}, \omega_{i j}$, and $s_{i j}$ are the elements of A_{0}, Ω, and S, respectively.
We will need to impose a sign convention since impulse responses could be positive or negative. Assume $a_{12}>0$ so that productivity rises with technology and $a_{21}<0$ so that hours fall with a demand shock (taxes in our case).

Eliminate a_{11} using the fact that $a_{11}=-s_{12} a_{21} / s_{11}$:

$$
\begin{aligned}
& \omega_{11}=f^{2} a_{21}^{2}+a_{12}^{2} \\
& \omega_{12}=f a_{21}^{2}+a_{12} a_{22} \\
& \omega_{22}=a_{21}^{2}+a_{22}^{2}
\end{aligned}
$$

where $f=-s_{12} / s_{11}$. Solve for a_{12} and a_{22} :

$$
\begin{align*}
a_{12} & =\left[\omega_{11}-f^{2} a_{21}^{2}\right]^{1 / 2} \tag{7}\\
a_{22} & =\left[\omega_{22}-a_{21}^{2}\right]^{1 / 2} \tag{8}
\end{align*}
$$

and substitute to get 2 equations, 2 unknowns:

$$
\omega_{12}=f a_{21}^{2}+\left[\omega_{11}-f^{2} a_{21}^{2}\right]^{1 / 2}\left[\omega_{22}-a_{21}^{2}\right]^{1 / 2} .
$$

Let $\lambda=a_{21}^{2}$ and we have a quadratic in λ :

$$
\left(\omega_{12}-f \lambda\right)^{2}=\left(\omega_{11}-f^{2} \lambda\right)\left(\omega_{22}-\lambda\right)
$$

which can be writte out:

$$
\omega_{12}^{2}-2 f \lambda \omega_{12}+f^{2} \lambda^{2}=\omega_{11} \omega_{22}-f^{2} \lambda \omega_{22}-\omega_{11} \lambda+f^{2} \lambda^{2}
$$

and simplified as follows:

$$
\lambda=\frac{\omega_{11} \omega_{22}-\omega_{12}^{2}}{\omega_{11}+f^{2} \omega_{22}-2 f \omega_{12}} .
$$

Since we want $a_{21}<0$, we set $a_{21}=-\sqrt{\lambda}$. Note the numerator of λ has to be positive because Ω is a variance-covariance matrix. The denominator is postive if $f \omega_{12}<0$ or not too big.

With a_{21}, we have a_{12} and a_{22} by (7) and (8). We also have $a_{11}=f a_{21}$. To keep the sign convention correct, we do the following sequence of operations in our computer code given inputs Ω and S (and hence λ and f as defined above):

$$
\begin{aligned}
& a_{21}=-\sqrt{\lambda} \\
& a_{11}=f a_{21} \\
& a_{12}=\sqrt{\omega_{11}-f^{2} \lambda} \\
& a_{22}= \begin{cases}\sqrt{\omega_{22}-\lambda} & \text { if } \omega_{12}-f \lambda>0 \\
-\sqrt{\omega_{22}-\lambda} & \text { otherwise }\end{cases}
\end{aligned}
$$

where the conditional statement on the sign of $\omega_{12}-f \lambda$ uses (4) and the solutions for a_{11} and a_{21}.

