Federal Reserve Bank of Minneapolis
Research Department Staff Report
June 2004

TECHNICAL APPENDIX I:
 Comment on Gali and Rabanal ${ }^{\dagger}$

Ellen R. McGrattan

Federal Reserve Bank of Minneapolis
and University of Minnesota
\dagger The views expressed herein are those of the author and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Table of Contents

1. The Benchmark Model 1
1.1. Nomenclature 1
1.2. Maximization problems 2
1.3. First-order conditions 3
1.4. Log-linear computation 5
2. A Version of the Model with Random Walk Technology 6
2.1. Nomenclature 6
2.2. Maximization problems 7
2.3. First-order conditions 7
2.4. Log-linear computation 7
3. U.S. Data 8
4. MLE Estimation 8
4.1. State-space form in the general case 9
4.2. Log-likelihood function 9
4.3. MLE in the Benchmark Case 10
4.4. MLE in the Random Walk Case 11
5. Simulating Data from the Models 13

In this Appendix, I provide some background notes for the model used in my discussion at the NBER macro annual of Gali and Rabanal. My goal is to evaluate whether the Gali-Rabanal SVAR can uncover theoretical impulse responses of a standard RBC model.

Here, I start with a description of the benchmark model and show how to compute a log-linear approximation to its equilibrium. The benchmark model has a geometric trend in growth. I also consider a version of the model with a random walk for technology. Then I show how to estimate the stochastic processes for the shocks using U.S. data on output, investment, hours, and government spending. With the estimates, I can construct time series that are used as "data" for Gali and Rabanal's empirical exercise.

1. The Benchmark Model

1.1. Nomenclature

Below I will use the following notation for our model variables:
N : population $\left(N_{t}=\left(1+g_{n}\right)^{t}\right)$
c : per-capita consumption
x : per-capita investment
k : per-capita net capital stock
l : per-capita labor input
$t r:$ per-capita government transfers
C : total consumption $\left(C_{t}=N_{t} c_{t}\right)$
X : total investment
K : total stock of capital
L : total labor input in production
Z : labor-augmenting technical change $\left(Z_{t}=z_{t}\left(1+g_{z}\right)^{t}\right)$
r : rental rate on capital
w : wage rate
τ_{v} : tax rate on v
\hat{v} : detrended, per-capita variable $V\left(\hat{v}_{t}=V_{t} /\left[N_{t}\left(1+g_{z}\right)^{t}\right]\right)$

1.2. Maximization problems

Consider an economy with households, firms, and the government. The representative household chooses consumption, investment, and labor to solve the following maximization problem:

$$
\begin{aligned}
& \max _{\left\{c_{t}, x_{t}, l_{t}\right\}} E \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, 1-l_{t}\right) N_{t} \\
& \text { subject to }\left(1+\tau_{c t}\right) c_{t}+\left(1+\tau_{x t}\right) x_{t}=\left(1-\tau_{k t}\right) r_{t} k_{t}+\left(1-\tau_{l t}\right) w_{t} l_{t}+\tau_{k t} \delta k_{t}+r_{t} \\
& N_{t+1} k_{t+1}=\left[(1-\delta) k_{t}+x_{t}\right] N_{t} \\
& c_{t}, x_{t} \geq 0 \quad \text { in all states }
\end{aligned}
$$

taking processes for the rental rate, wage rate, the tax rates, and transfers as given. The representative firm solves a simple static problem at t :

$$
\max _{\left\{K_{t}, L_{t}\right\}} F\left(K_{t}, Z_{t} L_{t}\right)-r_{t} K_{t}-w_{t} L_{t} .
$$

The government sets rates of taxes and transfers in such a way that their budget constraint at t, namely,

$$
G_{t}+N_{t} \operatorname{tr}_{t}=\tau_{k t}\left(r_{t}-\delta\right) N_{t} k_{t}+\tau_{l t} w_{t} l_{t} N_{t}+\tau_{c t} N_{t} c_{t}+\tau_{x t} N_{t} x_{t}
$$

is satisfied. In equilibrium, the following conditions must hold:

$$
\begin{align*}
& N_{t}\left(c_{t}+x_{t}\right)+G_{t}=F\left(K_{t}, Z_{t} L_{t}\right) \tag{1.1}\\
& N_{t} k_{t}=K_{t} \\
& N_{t} l_{t}=L_{t}
\end{align*}
$$

1.3. First-order conditions

I now derive first-order conditions in this economy. The Lagrangian for the household optimization problem is given by

$$
\begin{aligned}
\mathcal{L}= & E \sum_{t} \beta^{t} N_{t}\left\{U\left(c_{t}, 1-l_{t}\right)\right. \\
& +\mu_{t}\left\{\left(1-\tau_{k t}\right) r_{t} k_{t}+\left(1-\tau_{l t}\right) w_{t} l_{t}+\tau_{k t} \delta k_{t}+r_{t}-\left(1+\tau_{c t}\right) c_{t}-\left(1+\tau_{x t}\right) x_{t}\right\} \\
& \left.+\lambda_{t}\left\{(1-\delta) k_{t}+x_{t}-\left(1+g_{n}\right) k_{t+1}\right\}\right\}
\end{aligned}
$$

In Staff Report 328, we included a penalty function to enforce the nonnegativity constraint on investment. This is especially important for analyzing the Great Depression period. Here, I am considering postwar business cycles and, therefore, assume that the investment decision will be interior.

The relevant first-order conditions are found by taking derivatives of \mathcal{L} with respect to c_{t}, l_{t}, x_{t}, and k_{t+1} :

$$
\begin{aligned}
& 0=U_{1}\left(c_{t}, 1-l_{t}\right)-\mu_{t}\left(1+\tau_{c t}\right) \\
& 0=-U_{2}\left(c_{t}, 1-l_{t}\right)+\mu_{t}\left(1-\tau_{l t}\right) w_{t} \\
& 0=\mu_{t}\left(1+\tau_{x t}\right)+\lambda_{t}=0 \\
& 0=-\left(1+g_{n}\right) \lambda_{t}+E_{t}\left\{\mu_{t+1}\left[\left(1-\tau_{k t+1}\right) r_{t+1}+\delta \tau_{k t+1}\right]+\lambda_{t+1}(1-\delta)\right\}
\end{aligned}
$$

Eliminating multipliers yields:

$$
\begin{align*}
& \frac{U_{2}\left(c_{t}, 1-l_{t}\right)}{U_{1}\left(c_{t}, 1-l_{t}\right)}=\frac{1-\tau_{l t}}{1+\tau_{c t}} w_{t} \tag{1.2}\\
& \begin{aligned}
& \frac{1+\tau_{x t}}{1+\tau_{c t}} U_{1}\left(c_{t}, 1-l_{t}\right)=\beta E_{t}\left[\frac { U _ { 1 } (c _ { t + 1 } , 1 - l _ { t + 1 }) } { 1 + \tau _ { c t + 1 } } \left\{\left(1-\tau_{k t+1}\right) r_{t+1}+\delta \tau_{k t+1}\right.\right. \\
&\left.\left.+(1-\delta)\left(1+\tau_{x t+1}\right)\right\}\right]
\end{aligned}
\end{align*}
$$

In addition, there are first-order conditions for the firm's static problem. These are

$$
\begin{align*}
r_{t} & =F_{1}\left(K_{t}, Z_{t} L_{t}\right) \tag{1.4}\\
w_{t} & =F_{2}\left(K_{t}, Z_{t} L_{t}\right) Z_{t} \tag{1.5}
\end{align*}
$$

Finally, I have a resource constraint given by (1.1).
From here on, I make the following functional form assumptions and auxiliary choices:

$$
\begin{align*}
F(k, l) & =k^{\theta} l^{1-\theta} \tag{1.6}\\
U(c, 1-l) & =\left(c(1-l)^{\psi}\right)^{1-\sigma} /(1-\sigma) \tag{1.7}\\
\tau_{k t} & =\tau_{c t}=0 \\
s_{t} & =\left[\log z_{t}, \tau_{l t}, \tau_{x t}, \log \hat{g}_{t}\right]^{\prime} \\
s_{t+1} & =P_{0}+P s_{t}+Q \epsilon_{s, t+1}, \quad \epsilon_{s} \sim N\left(0_{4 \times 1}, I_{4 \times 4}\right) . \tag{1.8}
\end{align*}
$$

I have turned off τ_{c} since it plays a similar role to τ_{n} in distorting the labor-leisure choice. Similarly, I have turned off τ_{k} since it plays a similar role to τ_{x} in distorting the intertemporal margin.

If I substitute the choices (1.6)-(1.7) into (1.1) and (1.2)-(1.5), then substitute the equilibrium rates r_{t} and w_{t} into (1.2) and (1.3), I have:

$$
\begin{align*}
& N_{t}\left(c_{t}+g_{t}\right)+N_{t+1} k_{t+1}-(1-\delta) N_{t} k_{t}=\left(N_{t} k_{t}\right)^{\theta}\left(Z_{t} N_{t} l_{t}\right)^{1-\theta} \tag{1.9}\\
& \frac{\psi c_{t}}{1-l_{t}}=\left(1-\tau_{l t}\right)(1-\theta)\left(N_{t} k_{t}\right)^{\theta} Z_{t}^{1-\theta}\left(N_{t} l_{t}\right)^{-\theta} \tag{1.10}\\
& \left(1+\tau_{x t}\right) c_{t}^{-\sigma}\left(1-l_{t}\right)^{\psi(1-\sigma)} \\
& =\beta E_{t}\left[c _ { t + 1 } ^ { - \sigma } (1 - l _ { t + 1 }) ^ { \psi (1 - \sigma) } \left\{\left(1-\tau_{k t+1}\right) \theta\left(N_{t+1} k_{t+1}\right)^{\theta-1}\left(Z_{t+1} N_{t+1} l_{t+1}\right)^{1-\theta}\right.\right. \\
& \left.\left.+\delta \tau_{k t+1}+(1-\delta)\left(1+\tau_{x t+1}\right)\right\}\right] . \tag{1.11}
\end{align*}
$$

1.4. Log-linear computation

The next big step is to approximate the decision function for capital. Given an approximate function for k_{t+1}, I can use the static equations (1.12) and (1.13) to determine the decisions c_{t} and l_{t}.

Log-linearizations are done for a stationary version of the equations (1.9)-(1.11). Thus, before proceeding, I need to normalize variables. Dividing all variables that grow by $\left(1+g_{z}\right)^{t}$ gives me:

$$
\begin{align*}
& \hat{c}_{t}+\hat{g}_{t}+\left(1+g_{z}\right)\left(1+g_{n}\right) \hat{k}_{t+1}-(1-\delta) \hat{k}_{t}=\hat{y}_{t}=\hat{k}_{t}^{\theta}\left(z_{t} l_{t}\right)^{1-\theta} \tag{1.12}\\
& \frac{\psi \hat{c}_{t}}{1-l_{t}}=\left(1-\tau_{l t}\right)(1-\theta) \hat{k}_{t}^{\theta} l_{t}^{-\theta} z_{t}^{1-\theta} \tag{1.13}\\
& \begin{aligned}
&\left(1+\tau_{x t}\right))_{t}^{-\sigma}\left(1-l_{t}\right)^{\psi(1-\sigma)} \\
& \quad=\hat{\beta} E_{t} \hat{c}_{t+1}^{-\sigma}\left(1-l_{t+1}\right)^{\psi(1-\sigma)}\left[\theta \hat{k}_{t+1}^{\theta-1}\left(z_{t+1} l_{t+1}\right)^{1-\theta}+(1-\delta)\left(1+\tau_{x t+1}\right)\right]
\end{aligned}
\end{align*}
$$

where $\hat{\beta}=\beta\left(1+g_{z}\right)^{-\sigma}$.
To do the log-linear approximation, I will also need the steady state values of the variables in (1.12)-(1.14) (assuming constant values for z, the taxes, and government spending):

$$
\begin{aligned}
& \hat{k} / l=\left(\frac{\left(1+\tau_{x}\right)(1-\hat{\beta}(1-\delta))}{\hat{\beta} \theta z^{1-\theta}}\right)^{1 /(\theta-1)} \\
& \hat{c}=\left[(\hat{k} / l)^{\theta-1} z^{1-\theta}-\left(1+g_{z}\right)\left(1+g_{n}\right)+1-\delta\right] \hat{k}-\hat{g}=\xi_{1} \hat{k}-\hat{g} \\
& \hat{c}=\left[\left(1-\tau_{l}\right)(1-\theta)(\hat{k} / l)^{\theta} z^{1-\theta} / \psi\right](1-1 /(\hat{k} / l) \hat{k})=\xi_{2}-\xi_{3} \hat{k}
\end{aligned}
$$

where the last 2 equations imply $\hat{k}=\left(\xi_{2}+\hat{g}\right) /\left(\xi_{1}+\xi_{3}\right), \hat{c}=\xi_{1} \hat{k}-\hat{g}, l=(1 /(\hat{k} / l)) \hat{k}$.
Assume that the solution for the capital decision takes the form:

$$
\log \hat{k}_{t+1}=\gamma_{k} \log \hat{k}_{t}+\gamma\left[\begin{array}{llll}
\log z_{t} & \tau_{l t} & \tau_{x t} & \log \hat{g}_{t} \tag{1.15}
\end{array}\right]^{\prime}+\text { constant }
$$

where γ_{k} is a scalar and γ is 1×4 and equal to $\left[\gamma_{z}, \gamma_{l}, \gamma_{x}, \gamma_{g}\right]$. Assume the residual from the dynamic first-order condition (1.14) can be written (after substitutions from (1.12)
and (1.13)):

$$
\begin{aligned}
& f\left(E_{t} \log \hat{k}_{t+2}, \log \hat{k}_{t+1}, \log \hat{k}_{t}, \log z_{t+1}, \log z_{t}, \tau_{l t+1}, \tau_{l t}, \tau_{x t+1}, \tau_{x t}, \log \hat{g}_{t+1}, \log \hat{g}_{t}\right) \\
& \quad \approx a_{0} E_{t} \log \hat{k}_{t+2}+a_{1} \log \hat{k}_{t+1}+a_{2} \log \hat{k}_{t}+b_{0} E_{t} s_{t+1}+b_{1} s_{t}
\end{aligned}
$$

Then the general solution algorithm is to find γ_{k} that solves the quadratic equation

$$
a_{0} \gamma_{k}^{2}+a_{1} \gamma_{k}+a_{2}=0,
$$

and γ that solves the linear equations:

$$
a_{0} \gamma_{k} \gamma+a_{0} \gamma P+a_{1} \gamma+b_{0} P+b_{1}=0_{1 \times 4} .
$$

Note that this implies:

$$
\gamma=-\left[\left(a_{0} a+a_{1}\right) I_{4 \times 4}+a_{0} P^{\prime}\right]^{-1}\left(b_{0} P+b_{1} I_{4 \times 4}\right)^{\prime} .
$$

Once I have values for the the coefficients γ_{k} and γ, I can use (1.12) and (1.13) to back out c_{t} and l_{t} (either nonlinearly or by way of a log-linear approximation).

2. A Version of the Model with Random Walk Technology

2.1. Nomenclature

The only changes relative to the benchmark model described in Section 1 are:
Z : labor-augmenting technical change $\left(Z_{t}=Z_{t-1} z_{t}\right)$
z : the innovation to technology
\hat{v} : detrended, per-capita variable $V\left(\hat{v}_{t}=V_{t} /\left[N_{t} Z_{t}\right]\right)$ with the exception of k \hat{k} : detrended, per-capita capital, $\hat{k}_{t}=K_{t} /\left[N_{t} Z_{t-1}\right]$

2.2. Maximization problems

The maximization problems are the same as those in Section 1 except that households in this version assume $Z_{t}=Z_{t-1} z_{t}$ with the process for $\log z_{t}$ assumed to be autoregressive.

2.3. First-order conditions

The first-order conditions are the same as in Section 1.

2.4. Log-linear computation

The main difference between the benchmark model and the version with random-walk technology is the step taken to normalize variables In this version, the normalized variables are:

$$
\hat{c}_{t}=c_{t} / Z_{t}, \hat{x}_{t}=x_{t} / Z_{t}, \hat{g}_{t}=g_{t} / Z_{t}, \hat{y}_{t}=y_{t} / Z_{t}, \hat{k}_{t}=k_{t} / Z_{t-1}
$$

Using the functional forms for F and U in (1.6) and (1.7), respectively, the equilibrium rental and wage rates are:

$$
\begin{aligned}
r_{t} & =\theta K_{t}^{\theta-1}\left(Z_{t} L_{t}\right)^{1-\theta}=\theta \hat{k}_{t}^{\theta-1}\left(z_{t} l_{t}\right)^{1-\theta} \\
w_{t} & =(1-\theta) K_{t}^{\theta}\left(Z_{t} L_{t}\right)^{-\theta} Z_{t}=(1-\theta) \hat{k}_{t}^{\theta}\left(z_{t} l_{t}\right)^{-\theta} Z_{t}
\end{aligned}
$$

This implies the following first-order conditions

$$
\begin{align*}
& \hat{c}_{t}+\hat{g}_{t}+\left(1+g_{n}\right) \hat{k}_{t+1}-(1-\delta) z_{t}^{-1} \hat{k}_{t}=\hat{y}_{t}=\hat{k}_{t}^{\theta} l_{t}^{1-\theta} z_{t}^{-\theta} \tag{2.1}\\
& \frac{\psi \hat{c}_{t}}{1-l_{t}}=\left(1-\tau_{l t}\right)(1-\theta) \hat{k}_{t}^{\theta}\left(z_{t} l_{t}\right)^{-\theta} \tag{2.2}\\
& \left(1+\tau_{x t}\right) \hat{c}_{t}^{-\sigma}\left(1-l_{t}\right)^{\psi(1-\sigma)} \\
& \quad=\beta z_{t+1}^{-\sigma} E_{t} \hat{c}_{t+1}^{-\sigma}\left(1-l_{t+1}\right)^{\psi(1-\sigma)}\left[\theta \hat{k}_{t+1}^{\theta-1}\left(z_{t+1} l_{t+1}\right)^{1-\theta}+(1-\delta)\left(1+\tau_{x t+1}\right)\right] \tag{2.3}
\end{align*}
$$

Next, I compute the steady state of the system for constant values for z, the taxes,
and government spending:

$$
\begin{aligned}
& \hat{k} / l=\left(\frac{\left(1+\tau_{x}\right)\left(1-\beta z^{-\sigma}(1-\delta)\right)}{\beta z^{-\sigma} \theta z^{1-\theta}}\right)^{1 /(\theta-1)} \\
& \hat{c}=\left[(\hat{k} / l)^{\theta-1} z^{-\theta}-\left(1+g_{n}\right)+(1-\delta) z^{-1}\right] \hat{k}-\hat{g}=\xi_{1} \hat{k}-\hat{g} \\
& \hat{c}=\left[\left(1-\tau_{l}\right)(1-\theta)(\hat{k} / l)^{\theta} z^{-\theta} / \psi\right](1-1 /(\hat{k} / l) \hat{k})=\xi_{2}-\xi_{3} \hat{k}
\end{aligned}
$$

where the last 2 equations imply $\hat{k}=\left(\xi_{2}+\hat{g}\right) /\left(\xi_{1}+\xi_{3}\right), \hat{c}=\xi_{1} \hat{k}-\hat{g}, l=(1 /(\hat{k} / l)) \hat{k}$.
The form of the solution and the procedure for computing it is the same as in the benchmark case.

3. U.S. Data

The national account data are taken from the Survey of Current Business NIPA tables available at www.bea.gov. Population and hours data are taken from Edward Prescott and Alexander Ueberfeldt, "U.S. Hours and Productivity Behavior using CPS Hours Worked Data: 1959:I to 2003:II." I use the Matlab file setupdata.m to convert the raw data into input files for maximum likelihood estimation.

4. MLE Estimation

I now describe the general method I use to estimate the processes governing the four exogenous variables in s_{t} with the data described above.

4.1. State-space form in the general case

I assume that X is a vector of state variables from the model and Y are observables. The state-space form then is

$$
\begin{aligned}
X_{t+1} & =A X_{t}+B \epsilon_{t+1} \\
Y_{t} & =C X_{t}+\omega_{t} \\
\omega_{t} & =D \omega_{t-1}+\eta_{t}
\end{aligned}
$$

where D is equal to parameters governing serial correlation of measurement error. Assume that $E \eta_{t} \eta_{t}^{\prime}=R, E \epsilon_{t} \eta_{s}^{\prime}=0$ for all periods t and s. Define $\bar{Y}_{t} \equiv Y_{t+1}-D Y_{t}$. Then I can rewrite the system as:

$$
\begin{aligned}
X_{t+1} & =A X_{t}+B \epsilon_{t+1} \\
\bar{Y}_{t} & =\bar{C} X_{t}+C B \epsilon_{t+1}+\eta_{t+1}
\end{aligned}
$$

4.2. Log-likelihood function

The log-likehlihood function is

$$
\begin{equation*}
L(\Theta)=\sum_{t=0}^{T-1}\left\{\log \left|\Omega_{t}\right|+\operatorname{trace}\left(\Omega_{t}^{-1} u_{t} u_{t}^{\prime}\right)-\log \left|\partial f\left(Z_{t}, \Theta\right) / \partial Z_{t}\right|\right\} \tag{4.1}
\end{equation*}
$$

where the parameters to be estimated are stacked in vector Θ, the innvation vector is u_{t}, and its covariance is Ω_{t}. The last term in (4.1) is nonzero if the Y are not the raw series but depend on the raw series Z plus the parameter vector. For example, if I estimate g_{z} and use per-capita values as our raw data, then Z is per-capita data and Y is detrended, per-capita data.

The innovation vector u_{t} and its covariance Ω_{t} are defined as follows:

$$
\begin{aligned}
u_{t} & =\bar{Y}_{t}-\hat{E}\left[\bar{Y}_{t} \mid \bar{Y}_{t-1}, \bar{Y}_{t-2}, \ldots, \bar{Y}_{0}, \hat{X}_{0}\right] \\
& =Y_{t+1}-\hat{E}\left[Y_{t+1} \mid Y_{t}, Y_{t-1}, \ldots, Y_{0}, \hat{X}_{0}\right] \\
& =Y_{t+1}-D Y_{t}-\bar{C} \hat{X}_{t} \\
\Omega_{t} & =E u_{t} u_{t}^{\prime}=\bar{C} \Sigma_{t} \bar{C}^{\prime}+R+C B B^{\prime} C^{\prime} .
\end{aligned}
$$

which in turn depends on the predicted state \hat{X}_{t} :

$$
\hat{X}_{t}=\hat{E}\left[X_{t} \mid Y_{t}, Y_{t}, \ldots, Y_{0}, \hat{X}_{0}\right] .
$$

The predicted state evolves according to

$$
\hat{X}_{t+1}=A \hat{X}_{t}+K_{t} u_{t}
$$

where K_{t} is the Kalman gain,

$$
\begin{aligned}
K_{t} & =\left(B B^{\prime} C^{\prime}+A \Sigma_{t} \bar{C}^{\prime}\right) \Omega_{t}^{-1} \\
\Sigma_{t+1} & =A \Sigma_{t} A^{\prime}+B B^{\prime}-\left(B B^{\prime} C^{\prime}+A \Sigma_{t} \bar{C}^{\prime}\right) \Omega_{t}^{-1}\left(\bar{C} \Sigma_{t} A^{\prime}+C B B^{\prime}\right)
\end{aligned}
$$

with state covariance Σ_{t}.

4.3. MLE in the Benchmark Case

In the benchmark case, I have $X_{t}=\left[\log \hat{k}_{t}, \log z_{t}, \tau_{l t}, \tau_{x t}, \log \hat{g}_{t}, 1\right]^{\prime}, Y_{t}=\left[\log \hat{y}_{t}, \log \hat{x}_{t}, \log l_{t}, \log \hat{g}_{t}\right]$, and

$$
\begin{align*}
A & =\left[\begin{array}{cccccc}
\gamma_{k} & \gamma_{z} & \gamma_{l} & \gamma_{x} & \gamma_{g} & \gamma_{0} \\
0_{4 \times 1} & & P & & P_{0} \\
0 & & 0_{1 \times 4} & & 1
\end{array}\right] \\
B & =\left[\begin{array}{c}
0_{1 \times 4} \\
Q \\
0
\end{array}\right] \\
C & =\left[\begin{array}{cccccc}
\phi_{y k} & \phi_{y z} & \phi_{y l} & 0 & \phi_{y g} & \phi_{y 0} \\
\phi_{x k} & 0 & 0 & 0 & 0 & \phi_{x 0} \\
\phi_{l k} & \phi_{l z} & \phi_{l l} & 0 & \phi_{l g} & \phi_{l 0} \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]+\left[\begin{array}{c}
\phi_{y k^{\prime}} \\
\phi_{x k^{\prime}} \\
\phi_{l k^{\prime}} \\
0
\end{array}\right]\left[\begin{array}{llllll}
\gamma_{k} & \gamma_{z} & \gamma_{l} & \gamma_{x} & \gamma_{g} & 0
\end{array}\right] . \tag{4.2}
\end{align*}
$$

The coefficients ϕ are derived by log-linearizing (1.13) after substituting in for consumption from (1.12):

$$
\begin{aligned}
& 0 \approx \psi\left\{\hat{k}^{\theta}(z l)^{1-\theta}\left[\theta \log \hat{k}_{t}+(1-\theta)\left(\log z_{t}+\log l_{t}\right)\right]\right. \\
& \left.-\left(1+g_{z}\right)\left(1+g_{n}\right) \hat{k} \log \hat{k}_{t+1}+(1-\delta) \hat{k} \log \hat{k}_{t}-\hat{g} \log \hat{g}_{t}\right\} \\
& \quad+(1-\theta)\left(1-\tau_{l}\right) \hat{k}^{\theta} l^{-\theta} z^{1-\theta}(1-l)\left\{1 /\left(1-\tau_{l}\right) \tau_{l t}\right. \\
& \left.\quad-\theta \log \hat{k}_{t}+\theta \log l_{t}-(1-\theta) \log z_{t}+l /(1-l) \log l_{t}\right\}
\end{aligned}
$$

which I write succinctly as

$$
\begin{equation*}
\log l_{t}=\phi_{l k} \log \hat{k}_{t}+\phi_{l z} \log z_{t}+\phi_{l l} \tau_{l t}+\phi_{l g} \log \hat{g}_{t}+\phi_{l k^{\prime}} \log \hat{k}_{t+1} \tag{4.3}
\end{equation*}
$$

Using this equation for $\log l$, I use the production relation and the capital accumulation equation to write $\log \hat{y}$ and $\log \hat{x}$ as follows:

$$
\begin{align*}
& \log \hat{y}_{t}=\left(\theta+(1-\theta) \phi_{l k}\right) \log \hat{k}_{t}+(1-\theta)\left(1+\phi_{l z}\right) \log z_{t} \\
& \quad+(1-\theta)\left[\phi_{l l} \tau_{l t}+\phi_{l g} \hat{g}_{t}+\phi_{l k^{\prime}} \log \hat{k}_{t+1}\right] \\
& \equiv \phi_{y k} \log \hat{k}_{t}+\phi_{y z} \log z_{t}+\phi_{y l} \tau_{l t}+\phi_{y g} \log \hat{g}_{t}+\phi_{y k^{\prime}} \log \hat{k}_{t+1} \tag{4.4}\\
& \log \hat{x}_{t}=\left(1+g_{z}\right)\left(1+g_{n}\right) \hat{k} / \hat{x} \log \hat{k}_{t+1}-(1-\delta) \hat{k} / \hat{x} \log \hat{k}_{t} \\
& \equiv \phi_{x k} \log \hat{k}_{t}+\phi_{x k^{\prime}} \log \hat{k}_{t+1} \tag{4.5}
\end{align*}
$$

I fixed parameters of preferences, production, and growth and estimated the processes for the shocks. The parameters that were fixed were: $\psi=2.24, \sigma=1, \beta=.9722, \theta=.35$, $\delta=.0464, g_{n}=1.5 \%$, and $g_{z}=1.6 \%$. I also set $D=0_{4 \times 4}$ and $R=.0001 \times I_{4 \times 4}$. The parameters that were estimated were elements of P_{0}, P, and Q.

4.4. MLE in the Random Walk Case

In the case of random-walk technology, the settings are slightly different. In this case, I have $X_{s t}=\left[\log \hat{k}_{t}, \log z_{t}, \tau_{l t}, \tau_{x t}, \log \hat{g}_{t}, 1\right]^{\prime}, X_{t}=\left[X_{s t}, X_{s t-1}\right]^{\prime}$, and $Y_{t}=\left[\log y_{t}-\log y_{t-1}, \log x_{t}-\right.$ $\left.\log x_{t-1}, \log l_{t}, \log g_{t}-\log g_{t-1}\right]$. I can write the growth rates in Y_{t} as elements of X_{t} as follows:

$$
\begin{aligned}
\log y_{t}-\log y_{t-1}= & \log \left(\hat{y}_{t} Z_{t}\right)-\log \left(\hat{y}_{t-1} Z_{t-1}\right) \\
= & \log \left(\hat{y}_{t}\right)-\log \left(\hat{y}_{t-1}\right)+\log z_{t} \\
= & \phi_{y k}\left(\log \hat{k}_{t}-\log \hat{k}_{t-1}\right)+\left(1+\phi_{y z}\right) \log z_{t}-\phi_{y z} \log z_{t-1} \\
& +\phi_{y l}\left(\tau_{l t}-\tau_{l t-1}\right)+\phi_{y g}\left(\log \hat{g}_{t}-\log \hat{g}_{t-1}\right)+\phi_{y k^{\prime}}\left(\log \hat{k}_{t+1}-\log \hat{k}_{t}\right)
\end{aligned}
$$

Similarly I can write the growth rates for x_{t} and g_{t} in terms of the elements of X_{t}.
To obtain the ϕ coefficients, I log-linearize (2.2) after substituting in for consumption from (2.1):

$$
\begin{aligned}
& 0 \approx \psi\left\{\hat{k}^{\theta} l^{1-\theta} z^{-\theta}\left[\theta\left(\log \hat{k}_{t}-\log z_{t}\right)+(1-\theta) \log l_{t}\right]\right. \\
& \left.-\left(1+g_{n}\right) \hat{k} \log \hat{k}_{t+1}+(1-\delta) z^{-1} \hat{k}\left(\log \hat{k}_{t}-\log z_{t}\right)-\hat{g} \log \hat{g}_{t}\right\} \\
& +(1-\theta)\left(1-\tau_{l}\right) \hat{k}^{\theta}(z l)^{-\theta}(1-l)\left\{1 /\left(1-\tau_{l}\right) \tau_{l t}\right. \\
& \left.\quad-\theta \log \hat{k}_{t}+\theta\left(\log l_{t}+\log z_{t}\right)+l /(1-l) \log l_{t}\right\}
\end{aligned}
$$

which again I write succinctly as I did in (4.3). Using the equation for $\log l$, I use the production relation and the capital accumulation equation to write $\log \hat{y}$ and $\log \hat{x}$ as follows:

$$
\begin{align*}
& \log \hat{y}_{t}=\left(\theta+(1-\theta) \phi_{l k}\right) \log \hat{k}_{t}+\left((1-\theta) \phi_{l z}-\theta\right) \log z_{t} \\
& \quad+(1-\theta)\left[\phi_{l l} \tau_{l t}+\phi_{l g} \hat{g}_{t}+\phi_{l k^{\prime}} \log \hat{k}_{t+1}\right] \\
& \equiv \phi_{y k} \log \hat{k}_{t}+\phi_{y z} \log z_{t}+\phi_{y l} \tau_{l t}+\phi_{y g} \log \hat{g}_{t}+\phi_{y k^{\prime}} \log \hat{k}_{t+1} \tag{4.6}\\
& \log \hat{x}_{t}=\left(1+g_{n}\right) \hat{k} / \hat{x} \log \hat{k}_{t+1}-(1-\delta) z^{-1} \hat{k} / \hat{x}\left(\log \hat{k}_{t}-\log z_{t}\right) \\
& \equiv \phi_{x k} \log \hat{k}_{t}+\phi_{x z} \log z_{t}+\phi_{x k^{\prime}} \log \hat{k}_{t+1} . \tag{4.7}
\end{align*}
$$

The matrices in the state space form are

$$
A=\left[\begin{array}{cc}
A_{s} & 0 \\
I & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
B_{s} \\
0
\end{array}\right]
$$

where

$$
\begin{aligned}
& A_{s}=\left[\begin{array}{ccccc}
\gamma_{k} & \gamma_{z} & \gamma_{l} & \gamma_{x} & \gamma_{g}
\end{array}\right. \\
& \gamma_{4 \times 1} \\
& 0 \\
& 0_{0} \\
& 0_{1 \times 4} \\
& P_{0} \\
& B_{s}=\left[\begin{array}{c}
0_{1 \times 4} \\
Q \\
0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{align*}
C= & {\left[\begin{array}{cccccccccccc}
\phi_{y k}-\phi_{y k^{\prime}} & 1+\phi_{y z} & \phi_{y l} & 0 & \phi_{y g} & \phi_{y 0} & -\phi_{y k} & -\phi_{y z} & -\phi_{y l} & 0 & -\phi_{y g} & -\phi_{y 0} \\
\phi_{x k}-\phi_{x k^{\prime}} & 1+\phi_{x z} & 0 & 0 & 0 & \phi_{x 0} & -\phi_{x k} & -\phi_{x z} & 0 & 0 & 0 & -\phi_{x 0} \\
\phi_{l k} & \phi_{l z} & \phi_{l l} & 0 & \phi_{l g} & \phi_{l 0} & & & & & & \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right] } \\
& +\left[\begin{array}{c}
\phi_{y k^{\prime}} \\
\phi_{x k^{\prime}} \\
\phi_{l k^{\prime}} \\
0
\end{array}\right]\left[\begin{array}{lllllll}
\gamma_{k} & \gamma_{z} & \gamma_{l} & \gamma_{x} & \gamma_{g} & 0
\end{array}\right] . \tag{4.8}
\end{align*}
$$

5. Simulating Data from the Models

I draw 1000 sequences $\left\{\epsilon_{s, t}\right\}$. Given MLE estimates for P_{0}, P, Q, and initial conditions for s, I can use (1.8) to derive sequences for technology, tax rates, and spending. Given an initial condition for the capital stock k_{0}, I can use (1.8) to derive the time path for a sequence $\left\{k_{t}\right\}$. With technology, tax rates, spending, and capital, I have the entire state vector X_{t} period by period. I then use $Y_{t}=C X_{t}$ (since I have assumed negligible measurement error) for my observable vector where C is (4.2) in the benchmark case and (4.8) in the random-walk case.

