NBER Macroeconomics Annual 2004

Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Postwar U.S. Data? by Jordi Gali and Pau Rabanal

Comments by Ellen R. McGrattan, Minneapolis Fed

OVERVIEW OF GALI-RABANAL _____

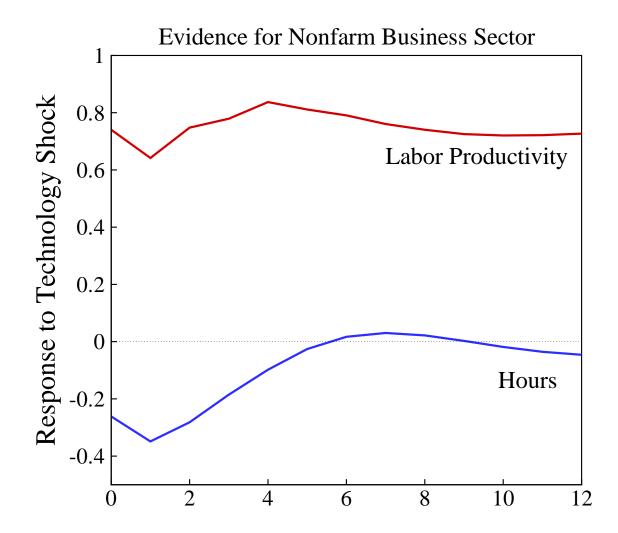
- Part I: Survey of structural VAR literature
 - RBC models don't fit postwar data well

Evidence: Hours fall in response to positive technology shock

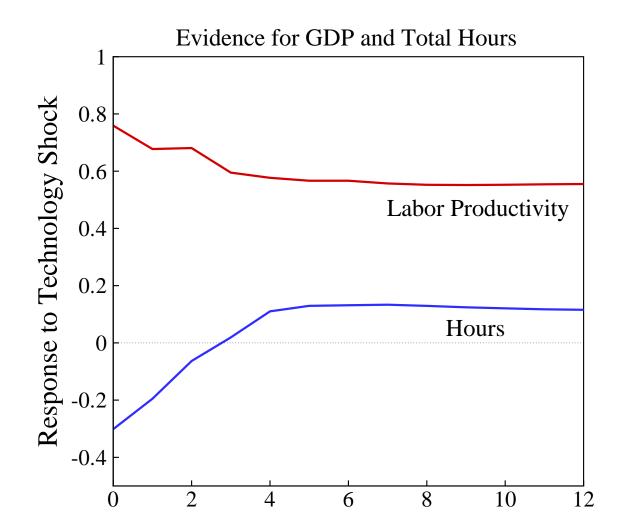
- Technology shocks don't play central role for business cycles
 Evidence: Contribution of these shocks quantitatively small
- Part II: Results of Sticky price/wage/habit Model
 - Demand factors are main force for business cycles

• Application of Blanchard and Quah (1989):

$$X_t = C(L)e_t = C_0e_t + C_1e_{t-1} + C_2e_{t-2} + \dots$$


• $X_t = [\Delta \text{ Log labor productivity}, \Delta \text{ Log hours}]'$

• $e_t = [\text{`technology shock', 'demand shock'}]'$


- Identifying restrictions:
 - $\circ Eee' = I,$
 - (1,2) element of C(1) = 0

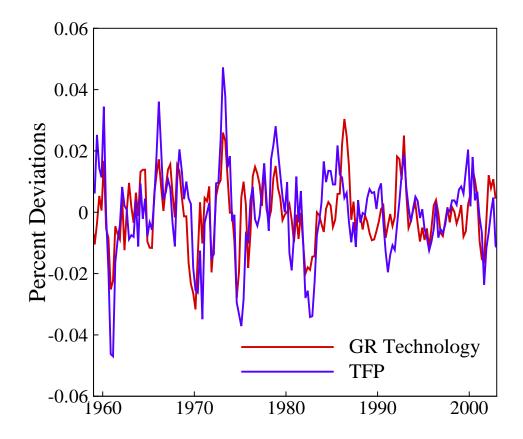
 \Rightarrow demand shocks have no long-run effect on labor productivity

THE EVIDENCE THAT DOOMS RBC THEORY

• Technology shocks drive down hours! RBC Theory predicts opposite.

- A SIMPLE CHECK ON STRUCTURAL VAR METHODOLOGY
 - What if "data" come from RBC model?
 - $\circ\,$ Take plain vanilla RBC model
 - $\circ\,$ Simulate time series from model
 - $\circ\,$ Apply GR methodology to data from model
 - Compare

GR impulse responses with true responses


GR technology with true technology

Specific Procedure _____

- Use RBC model with 4 shocks:
 - \circ Technology = TFP
 - Government Spending
 - Labor wedge such that static f.o.c. holds $(U_L/U_C = (1-\tau)w)$
 - $\circ\,$ Investment wedge such that dynamic Euler equation holds
- Estimate vector stochastic process for these shocks using US data

Results of Simple Check _____

- Facts from my RBC model:
 - Positive technology shocks imply hours up
 - Significant contribution of technology to output spectrum (40%)
- GR methodology applied to data from my RBC model:
 - Positive technology shocks imply hours down!
 - Insignificant contribution of technology to output spectrum

	GR	TFP	
Output	.28	.84	
Hours	12	.43	

Correlations

Why do GR get it so wrong?

- GR identification assumes
 - $\circ\,$ primitive shocks uncorrelated
 - two shocks only ("demand" and "technology")
 - certain stationarity restrictions
 - the data are AR(p), p=4?

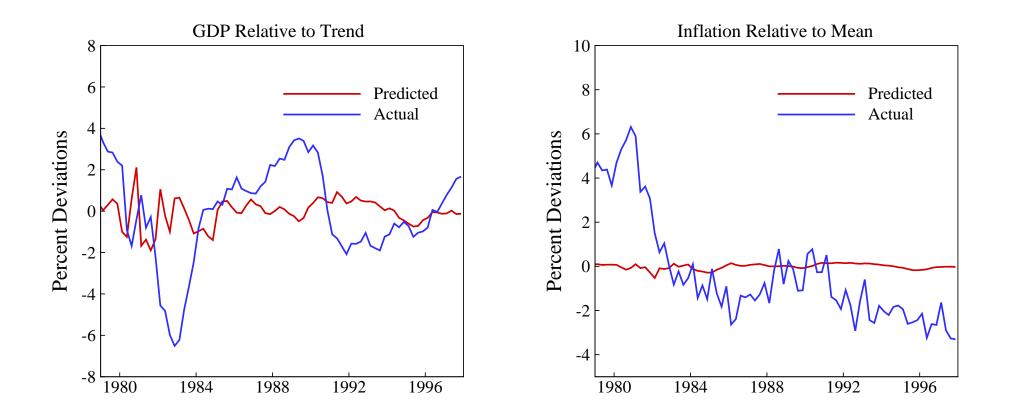
Why do GR get it so wrong?

- GR identification assumes
 - $\circ\,$ primitive shocks uncorrelated
 - two shocks only ("demand" and "technology")
 - certain stationarity restrictions
 - the data are AR(p), p=4?

But I didn't and usually don't!

Why do GR get it so wrong? _____

- GR identification assumes
 - $\circ\,$ primitive shocks uncorrelated
 - two shocks only ("demand" and "technology")
 - certain stationarity restrictions
 - the data are AR(p), p=4?


But I didn't and usually don't!

Problems with structural VARs well known (Cooley and Dwyer, J. Econometrics 1998) TIME TO MOVE ON _____

- VAR literature surveyed is stuck in the past
- Ignores 20 years of work since Kydland and Prescott (1982)
- Recent research looking to model sources of variation in TFP

Now let's turn to factors that GR think are important....

- GR use VAR results to argue for a "triple-sticky" model:
 - Adding sticky prices, sticky wages, habit persistence
 - Subtracting investment, government spending, and net exports!
- Is point of triple-sticky model to have a role for money?
 - Nominal rigidities let money shocks have real effects
 - Habit persistence extends effects
- Is money the important demand shock?

Predicted series from sticky model with monetary shocks from US data

Contribution of Shocks to Total Variance

	Tech. Shocks	Money Shocks	Pref. Shocks	Price Markup	Wage Markup
Output growth	22.3	4.8	57.1	8.0	7.1
Inflation	6.1	27.1	36.3	13.7	14.7
Hours	0.8	0.4	70.0	17.6	9.6

Demand factors that matter

A RECAP

Counter: My RBC model does fit postwar data well GR methodology fails simple test

Counter: My RBC model does fit postwar data well GR methodology fails simple test

• Claim: Technology shocks don't play central role for business cycles

Counter: My RBC model does fit postwar data well GR methodology fails simple test

• Claim: Technology shocks don't play central role for business cycles

Counter: In my RBC model, technology shocks do play central role GR methodology fails simple test

Counter: My RBC model does fit postwar data well GR methodology fails simple test

• Claim: Technology shocks don't play central role for business cycles

Counter: In my RBC model, technology shocks do play central role GR methodology fails simple test

• Claim: Demand factors (not money!) are main force for fluctuations

Counter: My RBC model does fit postwar data well GR methodology fails simple test

• Claim: Technology shocks don't play central role for business cycles

Counter: In my RBC model, technology shocks do play central role GR methodology fails simple test

• Claim: Demand factors (not money!) are main force for fluctuations

Counter: Just shifting black box from technology to preferences