TABLE I

PARAMETERS OF VECTOR AR(1) STOCHASTIC PROCESS IN TWO HISTORICAL EPISODES^a Estimated Using Maximum Likelihood with U.S. Data^b

A. Annual Data, 1901–40

Coefficient matrix P on lagged states				Coefficient matrix Q where $V = QQ'$					
$\begin{bmatrix} .732\\ (.470, .856) \end{bmatrix}$.0521 $(0364,.142)$	317 $(716,.130)$	0]	$[\begin{array}{c} .0575 \\ (.0440, .0666) \end{array}]$	0	0	0]		
150 (339,.0504)	1.04 (.908,1.10)	.390 (0751,.782)	0	00561 (0216,.00952)	.0555 $(.0378,.0643)$	0	0		
0114 (384,.260)	0197 $(262,.126)$.0731 $(363,.296)$	0	.000299 (0308,.0230)	000253 $(0167,.0121)$.0369 (.0194,.0489)	0		
0	0	0	.750 (.424,.814)	0	0	0	.221 (.145,.276)		

Means of states = [.541 (.503, .591), -.190 (-.271, -.0867), .286 (.216, .364), -2.79 (-2.95, -2.55)]

B. Quarterly Data, 1959:1-2004:3

Coefficient matrix P on lagged states

Coefficient matrix Q where V = QQ'

[980 (.944,.984)	0138 $(0192,.00222)$	0117 $(0129,00605)$.0192 (.0125,.0259)		$0116 \\ (.0105, .0126)$	0	0	0]
	0330 $(0396,0061)$.956(.920,.959)	0451 $(0512,0286)$.0569 (.0473,.0677)		.00141 (.000462,.00232)	.00644 (.00567,.00695)	0	0
	0702 $(1087,0672)$	0460 (0612,0304)	.896 (.879,.907)	.104 (.0817,.112)		0105 $(0141,00779)$.00103 (00278,.00266)	.0158 (.0133,.0190)	0
	.00481 (0278,.0116)	00811 $(0158,.0157)$.0488 (.0371,.0643)	.971 (.954,.974)		000575 (00219,.00132)	.00611 (.00383,.00760)	.0142 (.0121,.0154)	.00458 (.00386,.00554)
V	leans of states	= [0239(-	03010137).	.328. (.322.	.3	36)483(.473.	.495)1.53(-	-1.551.52`)]

^a To ensure stationarity, we add a penalty term to the likelihood function proportional to $\max(|\lambda_{\max}| - .995, 0)^2$, where λ_{\max} is the maximal eigenvalue of *P*. Numbers in parentheses are 90% confidence intervals for a bootstrapped distribution with 500 replications. To ensure that the variance-covariance matrix *V* is positive semi-definite, we estimate *Q* rather than V = QQ'.

^b Sources of basic data: See Chari, Kehoe, and McGrattan (2006).

TABLE II

A. SUMMARY STATISTICS									
	Standard Deviation Relative	Cross Correlation of Wedge with Output at Lag $k=$							
Wedges	to Output	-2	-1	0	1	2			
Efficiency	.63	.65	.76	.85	.60	.35			
Labor	.92	.52	.65	.71	.73	.68			
Investment	1.18	.44	.48	.47	.30	.09			
Government Consumption	1.51	42	42	33	24	11			

PROPERTIES OF THE WEDGES, 1959:1–2004:3^a

B. Cross Correlations

-

-

Wedges (X, Y)	-2	-1	0	1	2
Efficiency, Labor	.57	.48	.30	.28	.16
Efficiency, Investment	.31	.46	.61	.47	.35
Efficiency, Government Consumption	27	33	34	35	31
Labor, Investment	07	.11	.18	.37	.46
Labor, Government Consumption	02	22	38	47	50
Investment, Government Consumption	60	73	88	70	51

Cross Correlation of X with Y at Lag k =

^a Series are first logged and detrended using the HP filter.

TABLE III

A. Summary Statistics								
	Standard Deviation Relative	Cross Correlation of Component with Output at Lag $k=$						
Output Components	to Output	-2	-1	0	1	2		
Efficiency	.73	.65	.75	.83	.57	.31		
Labor	.59	.44	.59	.68	.74	.74		
Investment	.31	.33	.37	.40	.25	.07		
Government Consumption	.40	45	45	39	25	08		

PROPERTIES OF THE OUTPUT COMPONENTS, 1959:1–2004:3^a

B. Cross Correlations

Output Components (X, Y)	-2	-1	0	1	2
Efficiency, Labor	.54	.41	.18	.15	.04
Efficiency, Investment	.30	.44	.60	.40	.28
Efficiency, Government Consumption	34	45	56	48	39
Labor, Investment	17	03	03	.20	.29
Labor, Government Consumption	.14	03	13	31	40
Investment, Government Consumption	49	63	87	66	48

Cross Correlation of X with Y at Lag k =

^a Series are first logged and detrended using the HP filter.