TABLE I

Parameters of Vector AR(1) Stochastic Process in Two Historical Episodes ${ }^{\text {a }}$
 Estimated Using Maximum Likelihood with U.S. Data ${ }^{\text {b }}$

A. Annual Data, 1901-40

Coefficient matrix P on lagged states				Coefficient matrix Q where $V=Q Q^{\prime}$			
$\begin{gathered} .732 \\ (.470, .856) \end{gathered}$	$\begin{gathered} .0521 \\ (-.0364, .142) \end{gathered}$	$\begin{gathered} -.317 \\ (-.716, .130) \end{gathered}$	0	$\begin{gathered} .0575 \\ (.0440, .0666) \end{gathered}$	0	0	0
$\begin{gathered} -.150 \\ (-.339, .0504) \end{gathered}$	$\begin{gathered} 1.04 \\ (.908,1.10) \end{gathered}$	$\begin{gathered} .390 \\ (-.0751, .782) \end{gathered}$	0	$\begin{gathered} -.00561 \\ (-.0216, .00952) \end{gathered}$	$\begin{gathered} .0555 \\ (.0378, .0643) \end{gathered}$	0	0
$\begin{gathered} -.0114 \\ (-.384, .260) \end{gathered}$	$\begin{gathered} -.0197 \\ (-.262, .126) \end{gathered}$	$\begin{gathered} .0731 \\ (-.363, .296) \end{gathered}$	0	$\begin{gathered} .000299 \\ (-.0308, .0230) \end{gathered}$	$\begin{gathered} -.000253 \\ (-.0167, .0121) \end{gathered}$	$\begin{gathered} .0369 \\ (.0194, .0489) \end{gathered}$	0
0	0	0	.750 $(.424, .814)$	0	0	0	.221 $(.145, .276)$

Means of states $=[.541(.503, .591),-.190(-.271,-.0867), .286(.216, .364),-2.79(-2.95,-2.55)]$
B. Quarterly Data, 1959:1-2004:3

Coefficient matrix P on lagged states
Coefficient matrix Q where $V=Q Q^{\prime}$

$\left[\begin{array}{c} .980 \\ (.944, .984) \end{array}\right.$	$\begin{gathered} -.0138 \\ (-.0192, .00222) \end{gathered}$	$\begin{gathered} -.0117 \\ (-.0129,-.00605) \end{gathered}$	$\begin{gathered} .0192 \\ (.0125, .0259) \end{gathered}$	$\left[\begin{array}{c} .0116 \\ (.0105, .0126) \end{array}\right.$	0	0	0
$\begin{gathered} -.0330 \\ (-.0396,-.0061) \end{gathered}$	$\begin{gathered} .956 \\ (.920, .959) \end{gathered}$	$\begin{gathered} -.0451 \\ (-.0512,-.0286) \end{gathered}$	$\begin{gathered} .0569 \\ (.0473, .0677) \end{gathered}$	$\begin{gathered} .00141 \\ (.000462, .00232) \end{gathered}$	$\begin{gathered} .00644 \\ (.00567, .00695) \end{gathered}$	0	0
$\begin{gathered} -.0702 \\ (-.1087,-.0672) \end{gathered}$	$\begin{gathered} -.0460 \\ (-.0612,-.0304) \end{gathered}$	$\begin{gathered} .896 \\ (.879, .907) \end{gathered}$	$\begin{gathered} .104 \\ (.0817, .112) \end{gathered}$	$\left(\begin{array}{c}-.0105 \\ (-.0141,-.00779)\end{array}\right.$	$(-.00278, .00266)$	$\begin{gathered} .0158 \\ (.0133, .0190) \end{gathered}$	0
$\left[\begin{array}{c} .00481 \\ (-.0278, .0116) \end{array}\right.$	$\begin{gathered} -.00811 \\ (-.0158, .0157) \end{gathered}$	$\begin{gathered} .0488 \\ (.0371, .0643) \end{gathered}$	$\begin{gathered} .971 \\ (.954, .974) \end{gathered}$	$\left[\begin{array}{c}-.000575 \\ (-.00219, .00132)\end{array}\right.$	$\begin{gathered} .00611 \\ (.00383, .00760) \end{gathered}$	$\begin{gathered} .0142 \\ (.0121, .0154) \end{gathered}$	$\begin{gathered} .00458 \\ (.00386, .00554) \end{gathered}$

Means of states $=[-.0239(-.0301,-.0137), .328,(.322, .336), .483(.473, .495),-1.53(-1.55,-1.52)]$

[^0]
TABLE II

Properties of the Wedges, 1959:1-2004:3a

A. Summary Statistics						
Wedges	Standard Deviation Relative to Output	Cross Correlation of Wedge with Output at Lag $k=$				
		-2	-1	0	1	2
Efficiency	. 63	. 65	. 76	. 85	. 60	. 35
Labor	. 92	. 52	. 65	. 71	. 73	. 68
Investment	1.18	. 44	. 48	. 47	. 30	. 09
Government Consumption	1.51	-. 42	-. 42	-. 33	-. 24	-. 11

B. Cross Correlations

$$
\text { Cross Correlation of } X \text { with } Y \text { at Lag } k=
$$

Wedges (X, Y)	-2	-1	0	1	2
Efficiency, Labor	.57	.48	.30	.28	.16
Efficiency, Investment	.31	.46	.61	.47	.35
Efficiency, Government Consumption	-.27	-.33	-.34	-.35	-.31
Labor, Investment	-.07	.11	.18	.37	.46
Labor, Government Consumption	-.02	-.22	-.38	-.47	-.50
Investment, Government Consumption	-.60	-.73	-.88	-.70	-.51

[^1]TABLE III
Properties of the Output Components, 1959:1-2004:3a

A. Summary Statistics						
Output Components	Standard Deviation Relative to Output	Cross Correlation of Component with Output at Lag $k=$				
		-2	-1	0	1	2
Efficiency	. 73	. 65	. 75	. 83	. 57	. 31
Labor	. 59	. 44	. 59	. 68	. 74	. 74
Investment	. 31	. 33	. 37	. 40	. 25	. 07
Government Consumption	. 40	-. 45	-. 45	-. 39	-. 25	-. 08

B. Cross Correlations

Cross Correlation of X with Y at Lag $k=$

Output Components (X, Y)	-2	-1	0	1	2
Efficiency, Labor	.54	.41	.18	.15	.04
Efficiency, Investment	.30	.44	.60	.40	.28
Efficiency, Government Consumption	-.34	-.45	-.56	-.48	-.39
Labor, Investment	-.17	-.03	-.03	.20	.29
Labor, Government Consumption	.14	-.03	-.13	-.31	-.40
Investment, Government Consumption	-.49	-.63	-.87	-.66	-.48

[^2]
[^0]: ${ }^{\mathrm{a}}$ To ensure stationarity, we add a penalty term to the likelihood function proportional to max $\left(\left|\lambda_{\max }\right|-.995,0\right)^{2}$, where $\lambda_{\text {max }}$ is the maximal eigenvalue of P. Numbers in parentheses are 90% confidence intervals for a bootstrapped distribution with 500 replications. To ensure that the variance-covariance matrix V is positive semi-definite, we estimate Q rather than $V=Q Q^{\prime}$.
 ${ }^{\mathrm{b}}$ Sources of basic data: See Chari, Kehoe, and McGrattan (2006).

[^1]: ${ }^{\text {a }}$ Series are first logged and detrended using the HP filter.

[^2]: ${ }^{\text {a }}$ Series are first logged and detrended using the HP filter.

