What Equity Premium?

Ellen R. McGrattan and Edward C. Prescott

Two Asset-Pricing Puzzles

- Campbell-Shiller:

Deviations from $\operatorname{avg}(\mathrm{P} / \mathrm{E})=15$ too large: "bubbles" \& "crashes."

- Mehra-Prescott:

The equity premium is too high relative to prediction of theory.

- Large deviations in P/Es from 15: A puzzle?

Not in light of dramatic changes in taxes and regulations.

- The equity premium: A puzzle?

Not in light of taxes, diversification costs, and regulations.

The Theory

Theory Used

- Household:
$\max \sum_{t} \beta^{t} U\left(c_{t}, n_{t}\right)$
s.t. $\sum_{t} p_{t}\left\{c_{t}+v_{t}\left(s_{t+1}-s_{t}\right)\right\} \leq \sum_{t} p_{t}\left\{\left(1-\tau_{\text {dist }}\right) d_{t} s_{t}+w_{t} n_{t}+\psi_{t}\right\}$
- Corporation:

```
max }\mp@subsup{\sum}{t}{}\mp@subsup{p}{t}{}\mp@subsup{d}{t}{}(1-\mp@subsup{\tau}{dist}{}
```

where $d_{t}=\left(1-\tau_{\text {corp }}\right)\left[f\left(k_{m, t}, k_{u, t}, z_{t} n_{t}\right)-w_{t} n_{t}-\delta_{m} k_{m, t}-x_{u, t}\right]$

$$
-\left[k_{m, t+1}-k_{m, t}\right]+\tau_{s u b s} x_{m, t}
$$

$$
\begin{array}{ll}
v_{t}=\left(1-\tau_{\text {dist }}\right)\left[\left(1-\tau_{\text {subs }}\right) k_{m, t+1}+\left(1-\tau_{\text {corp }}\right) k_{u, t+1}\right] \\
& \\
v & \text { equilibrium price of corporate equity } \\
\tau_{\text {dist }} & \text { tax rate on dividends } \\
\tau_{\text {corp }} & \text { tax rate on corporate income } \\
\tau_{\text {subs }} & \text { subsidy on corporate tangible investment } \\
k_{m} & \text { measured tangible corporate capital stock } \\
k_{u} & \text { unmeasured intangible corporate capital stock }
\end{array}
$$

NOTE: Result still holds in two-sector model with all taxes on!

- BEA's measure of after-tax NIPA corporate profits:

$$
\Pi=\left(1-\tau_{\text {corp }}\right)\{\underbrace{\left[r_{m}-\delta_{m}-\tau_{\text {prop }}\right] k_{m}}_{\text {from tangibles }}+\underbrace{r_{u} k_{u}-x_{u}}_{\text {from intangibles }}\}
$$

- Assume economic returns across capitals equated:

$$
i=\left(1-\tau_{\text {corp }}\right)\left[r_{m}-\delta_{m}-\tau_{\text {prop }}\right]=r_{u}-\delta_{u}
$$

- Then simple algebra shows:

$$
\Pi=i k_{m}+(i-g)\left(1-\tau_{\text {corp }}\right) k_{u}
$$

where $x_{u}=\left(g+\delta_{u}\right) k_{u}$ and g is growth rate of economy

1. Capital-output ratio affected by profits tax not distribution tax.
2. If tax is deferred to retirement, price not lower by $\tau_{\text {dist }}$.
3. $\tau_{\text {dist }}$ is

- personal tax rate if distribution by dividends
- capital gain tax rate if distribution by share buy-backs

Large Deviations in P/Es

Stock Market Levels

- Large deviations in P / E from historical average generate concern.
- What level of the stock market is justified by fundamentals?
- Was the stock market overvalued in the 1920s or 1990s?
- Was the stock market undervalued in the 1970s and 1980s?

Surprising Results

- Stock values should have been:
- High in the 1920s and 1990s ... and were.
- Low in the 1970s and 1980s ... and were.

What Drives the Results?

- Significant changes in tax and regulatory policies.

Relating Results to U.S. Qualitatively

- 1920s:

Low tax rates and subsidies
\Rightarrow High capital-output and value-output ratios

- 1940s-1950s:

Very high tax rates on distributions and corporate income
\Rightarrow Lower capital-output and value-output ratios

- 1970s-early 1980s:

Big subsidies
\Rightarrow Lower value-output ratio

But legislation effectively lowered tax on distributions
\Rightarrow transition to higher value-output ratio by late 1990 s

$$
1929 \dagger \quad 1960-69 \quad 1998-01
$$

Predicted Fundamental Value
Domestic tangible capital
Domestic intangible capital
Foreign capital
Total Rel. to GDP

Total Rel. to Earnings (P/E)
Actual Market Value
Corporate equities
Net Debt
Total Rel. to GDP

Total Rel. to Earnings (P/E) | 1.67 |
| ---: |
| ≈ 0 |
| 1.67 |
| 19 |

. 90
1.58
.07
.03
.97
1.61
\dagger August 30, 1929

Low Equity Prices in 1970s

- Starting 1973: value-output ratio fell in half
- Three significant contributors:
- Switch to debt-financing
- Investment tax credits and accelerated depreciation allowances
- Expectations of subsidies in place in Europe

Transition following Tax Reform: An Example \qquad

The Adjustment Path for the Price of Capital

Tax Rates (\%)
Corporate Profits End of Period 45 Average
Corporate Dividends
End of Period
Average
Investment Subsidy
End of Period
Average
Capital Stocks/GDP
Domestic Tangible
Domestic Intangible
For./Dom. Profits
.11
. 99
1.03
1.23
1.45
.66 . 51
. 04
.29

US
1960-69 1998-01

Predicted Values:
Domestic tangible
$.56 \quad .84$

Domestic intangible
.23 . 35

$\underline{.09}$	$\underline{.38}$	$\underline{.03}$	$\underline{.48}$
.88	1.57	.81	2.15

Actual Market Values

Corporate Equity	.90	1.58	.77	1.85
Net Debt	$\underline{.07}$	$\underline{.03}$	$\underline{.04}$	$\underline{.39}$
Total	.97	1.61	.81	2.24

UK vs. US in 1970s and 1980s

- UK had larger capital subsidies in 1970s/1980s than US
- Theory: predicts larger fall in equity prices for UK in 1970s
- Data: supports this
- UK had earlier, more dramatic fall in effective tax on distributions
- Theory: predicts earlier and more dramatic rise in equity values
- Data: supports this

Summary: Large Deviations in P/Es

- Trends in stock values aren't puzzling in light of theory
- Future research should focus:
- More on taxes and regulations
- More on variations across periods
- Less on century-long averages

The Equity Premium Puzzle

Facts Highlighted by Mehra-Prescott

- Real returns for 1889-1978 on
- S\&P 500 stocks: 6.98\%
- 90-day bills: $\quad .80 \%$

Difference: $\quad 6.18 \%$ per year
\Rightarrow a very large difference

Puzzle Highlighted By Mehra-Prescott

- With:
- Lucas' (1978) pure endowment economy
- Two assets: risky stock and risk-free bond
- Calibrated to US consumption process
- FIND: tiny equity risk premium (.35\% vs 6.18%)

A Reexamination

Mehra-Prescott	McGrattan-Prescott
No taxes	Taxes
No diversification costs	Diversification costs
No regulations	Regulations

Implication for Long-TERM Returns

- Long-run savings in equities, debt, and capital determined by:

$$
0=E_{t}\left[\frac{u_{c}\left(c_{t+s}, l_{t+s}\right)}{u_{c}\left(c_{t}, l_{t}\right)}\left(r_{t+s}^{i}-r_{t+s}^{j}\right)\right], \quad i, j \in\{e, d, k\}
$$

- We want estimates of returns actually received on long-term savings

A Reexamination of U.S. Data

Dividend Tax Rates High in Some Periods

Equity Diversification Costs High Too

Equity \& Capital Returns: Not that different

What About Debt?

- As with equity, want to account for
- Taxes
- Diversification costs
- Inflation
- Will also review important regulations during WWII

Capital \& Debt Returns: Not That Different

- Big deviation in war because of restrictions on:
- Expenditures: Regulation W and restricted production
- Investments:
- Fixed schedule of government rates $\leq 2 \frac{1}{2} \%$
- Legal list of assets for life insurance, trusts, savings banks
- In other periods, average returns not that different

Capital \& Debt Returns Including War Years

A Long-Run Look at Returns

Summary: The equity premium puzzle

- Average returns aren't puzzling in light of theory
- Future research should focus:
- More on returns of diversified securities held long-term
- More on taxes and regulations
- Less on nondiversifiable aggregate risk
- Tempting to blame stock market anomalies on "behavioral" swings.
- Our approach is to
- Use growth theory for theoretical benchmark
- Ask, On what dimensions does theory match or miss?
- Introduce features not previously considered
- Our main findings:
- Critical changes in taxes and regulations important
- Still need work before we crack volatility puzzle

