

Stock Market Value to GNP _____

- Doubled since 1994
- Previous peak in 1968

Stock Market Value

- Is 1.8 GNPs too high?
- Should Greenspan be concerned?
- Should investors switch from stocks to bonds?

Price-Earnings Ratio

- At historical high
- Earnings not rising with price

Another look: Earnings-Price Ratio _____

- E/P like return
- At historical low

Earnings-Price Ratio

- Is earnings-price ratio of 4% too low?
- Should we expect 7% real stock returns of the past?

\$1 in 1802 in stocks \Rightarrow \$658,000 in 2000

in long-term bonds \Rightarrow \$900

Bubble?

• Or should we expect a crash like in Japan?

Our Reading of the Data

- Is 1.8 GNPs too high? No.
- Should Greenspan be concerned?
- Should investors switch from stocks to bonds? Possibly.
- Is earnings-price ratio of 4% too low? No.
- Should we expect 7% real returns of the past?
- Should we expect a market crash? If it goes higher.

Two Approaches -

- Finance:
- Data: CRSP

o Theory:
$$V_0 = E\left[\frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \ldots\right]$$

- Macro:
- o Data: NIPA
- \circ Theory: growth theory with V=K

• Main results:

• Value of stocks = Value of corporate capital stock

 \circ Return on stocks \approx Return on capital stock

 \circ Earnings-price ratio \approx Return on stocks

• Equity premium is small

Key Facts Motivating Model We Use _____

Non-corporate

Business, 16%

Government, 17%

Housing, 29%

Consumer
Durables, 8%

- Corporate and non-corporate sectors large Corporate, 30%
 - \Rightarrow need 2 sectors
- Corporate sector nearly 100% equity financed
 - ⇒ don't worry about corporate debt

- \Rightarrow households not on corners
- Household pension debt/equity is .57/.63 GNPs
 - \Rightarrow can avoid transaction costs of switching

2-Sector Growth Model

• Willingness to substitute:

$$\sum_{t=0}^{\infty} \beta^t \left[\frac{1}{1-\sigma} (c_t \ell_t^{\psi})^{1-\sigma} \right] N_t$$

• Ability to transform:

$$y_1 = (k_{1m})^{\phi_m} (k_{1u})^{\phi_u} (zn_1)^{1-\phi_m-\phi_u}$$

$$y_2 = (k_2)^{\theta} (zn_2)^{1-\theta}$$

2=noncorporate

$$y = A (\mu y_1^{\rho} + (1 - \mu) y_2^{\rho})^{1/\rho}$$

Variables:

y = output, k = capital, n = labor, z = technology $c = \text{consumption}, \ \ell = \text{leisure}, \ N = \text{household size}$

2 Decentralizations

- 1. Firms make dynamic decisions & households get profits
- 2. Households make dynamic decisions

$$(1+\tau_{c,t})c_t + \underbrace{x_{1m,t} + x_{1u,t} + x_{2,t}}_{\text{investments}}$$

$$= \underbrace{r_{1m,t}k_{1m,t} + r_{1u,t}k_{1u,t} + r_{2,t}k_{2,t} + \underbrace{w_tn_t}_{\text{wages}}}_{\text{rental income}}$$

$$-\underbrace{\tau_{1k,t}k_{1m,t} - \tau_{2k,t}k_{2,t} - \tau_{n,t}w_tn_t}_{\text{property taxes}}$$

$$-\underbrace{\tau_{1,t}\left[(r_{1m,t} - \delta_{1m} - \tau_{1k,t})k_{1m,t} + r_{1u,t}k_{1u,t} - x_{1u,t}\right]}_{\text{corporate taxes}}$$

$$-\underbrace{\tau_{2,t}\left[(r_{2,t} - \delta_{2} - \tau_{2k,t})k_{2,t}\right] + \underbrace{\tau_{t}}_{\text{transfers}}}_{\text{noncorporate taxes}}$$

$$+\underbrace{\tau_{1u,t}k_{1u,t} - x_{1u,t}\right]}_{\text{noncorporate taxes}}$$

Stock Value and Asset Returns

• Value at date t

$$V_t = \underbrace{k_{1m,t+1}}_{t=1} + \underbrace{(1- au_{1,t})k_{1u,t+1}}_{t=1}$$

value of tangible capital value of intangible capital

• Asset returns, t to t+1:

$$r_{t,t+1}^e = \frac{V_{t+1} + d_{t+1}N_{t+1}}{V_t} - 1$$

$$r_t^f = \left[\beta E_t \frac{(c_{t+1})^{-\sigma} (\ell_{t+1})^{\psi(1-\sigma)}}{(c_t)^{-\sigma} (\ell_t)^{\psi(1-\sigma)}} \right]^{-1} - 1$$

Note: τ_1 is the corporate tax rate d is corporate distributions

Value of Corporate Capital, 1990-1999

Structures $0.47 \; \mathrm{GNPs}$

Equipment

Inventories

0.16

0.36

0.06

U.S. capital abroad

Land

Unmeasured intangible capital

0.41

0.29

Total 1.75 GNPs

Current Value of Stocks

1.80 GNPs

 \Rightarrow 1.8 GNPs is not too high.

Estimates of Capital, 1990-1999

- U.S. Capital Abroad
- Profits of foreign subsidiaries = .012 GNPs
- \circ Return on their capital $\approx 4.1~\%$
- \Rightarrow Value of stock $\approx .012/.041 = .29$ GNPs
- Intangible Capital
- Assume returns to capital in all sectors equal
- Assume part of corp. profits from intangible capital
- \Rightarrow formula for value of intangible capital = .41 GNPs

Estimate of Intangible Capital

Determine interest rate from noncorporate sector:

$$i = \frac{\text{accounting} + \text{imputed profits}}{\text{noncorporate} + \text{foreign subsidiary capital}}$$

$$= \frac{.064 + .89i}{2.16 + .012/i} \Rightarrow i = 4.1\%$$

Equate interest rates in two sectors:

$$i = \frac{\text{after-tax profits from measured capital}}{\text{measured capital}}$$

$$= (1 - .36) \frac{.073 + .03k_{1u} - .0408k_{1u}}{1.043} \Rightarrow k_{1u} = .64$$

Asset Returns: Prediction of Theory -

- Steps taken:
- Calibrate model to U.S. 1990-1999
- Allow uncertainty in

technology tax rates

corporate capital shares

Simulate model – compute average returns

Asset Returns: Prediction of Theory

• Findings:

- \circ Average returns on equity (r^e) and debt $(r^f) pprox 4.1\%$
- Equity premium less than .1%
- \Rightarrow earnings-price ratio of 4% not too low
- \Rightarrow we should not expect 7% real returns of the past

Equity Premium Puzzle

- Mehra and Prescott (1985):
- showed large historical premium inconsistent with standard theory
- this lead to many theories of large premium
- Current data show a vanishing premium

What Should Investors Do?

- Diversify
- Consider inflation-protected bonds
- Sell if market value continues to rise
- Buy if it crashes

What Should Theorists Do?

Address:

- What accounts for low historical stock values?
- What accounts for large swings in stock values?
- What accounts for business cycles and asset returns?