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ABSTRACT

Applied macroeconomists interested in identifying the sources of business cycle fluctuations

typically have no more than 40 or 50 years of data at a quarterly frequency. With sample

sizes that small, identification may not be possible even if the analyst has a correctly-

specified representation of the data. In this paper, I investigate whether small samples are

indeed a problem for some commonly used statistical representations. I compare three—a

vector autoregressive moving average (VARMA), an unrestricted state space, and a re-

stricted state space—that are all consistent with the same prototype business cycle model.

The statistical representations that I consider differ in the amount of a priori theory that is

imposed but are all correctly specified. I find that the identifying assumptions of VARMAs

and unrestricted state space representations are too minimal: the range of estimates for

statistics of interest for business cycle researchers are so large as to be uninformative.
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1. Introduction

Applied macroeconomists interested in identifying the sources of business cycle fluctuations

typically have no more than 40 or 50 years of data at a quarterly frequency. With sample

sizes that small, identification may not be possible even if the analyst has a correctly-

specified representation of the data. In this paper, I investigate whether small samples are

indeed a problem for some commonly used statistical representations applied to the same

prototype business cycle model. The business cycle model is a prototype in the sense that

many models, with various frictions and shocks, are observationally equivalent to it.

The statistical representations that I consider differ in the amount of theoretical detail

that is imposed a priori, but all are correctly specified. In other words, if we had a

sample of infinite length, all representations would correctly identify the sources of business

cycles and the contributions of different shocks to economic fluctuations. I compare three

representations: (i) a vector autoregressive moving average (VARMA), (ii) an unrestricted

state space, and (iii) a restricted state space. All are consistent with the same prototype

business cycle model, but the VARMA imposes few restrictions based on the underlying

economic environment and the restricted state space imposes many. In particular, the

VARMA representation is a system of equations in reduced form while the restricted

state space representation uses specific details about the incentives and tradeoffs faced by

economic agents in the theory.

I find that the identifying assumptions of the VARMA and unrestricted state space

representations are too minimal to uncover statistics of interest for business cycle research

with sample sizes used in practice. I demonstrate this by simulating 1000 datasets of length

200 quarters using the prototype business cycle model. For each dataset and each of the

three statistical representations of the data, I apply the method of maximum likelihood

to estimate parameters for that representation and then construct statistics of interest to
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business cycle analysts. The statistics include impulse responses, variance decompositions,

and second moments of filtered data. For the VARMA and unrestricted state space repre-

sentations, I find that many of the predictions are biased and have large standard errors.

The errors are so large as to be uninformative.

Since the restricted state space representation relies on specific details of the eco-

nomic environment, the maximum likelihood parameters are economically interpretable

and can be constrained to lie in economically plausible ranges. In practice, business cycle

researchers may put further constraints on the ranges of these parameters using inde-

pendent micro or macroevidence. I also do this and compare results across experiments,

varying constraints on the possible ranges of the maximum likelihood parameters. In-

terestingly, I find that the main results—which are the statistics of interest for business

cycle analysts—are not sensitive to varying the constraints if they are confined to the

economically plausible range.

In a related study, Kascha and Mertens (2009) compare the small sample performances

of the VARMA and unrestricted state space representations with that of a structural vector

autoregression (SVAR). (See Box A for some background on SVARs.) They do not consider

restricted state space representations which impose much more theory. They find that the

VARMA performs about as well as SVARs, and the state space representation performs

slightly better than the SVARs. However, none of the representations they consider yield

precise estimates for the statistics that these authors highlight.

In Section 2, I lay out the prototype business cycle model. Section 3 summarizes

the three statistical representations. The method of maximum likelihood used to estimate

parameters of the three representations is described in Section 4. In Section 5, I report on

the business cycle statistics computed for each representation. Section 6 concludes.
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2. The Prototype Business Cycle Model

I use a prototype growth model as the data generating process for this study. The model

is a prototype in the sense that a large class of models, including those with various

types of frictions and various sources of shocks, are equivalent to a growth model with

time-varying wedges that distort the equilibrium decisions of agents operating in otherwise

competitive markets. (See Chari et al. 2007.) These wedges are modeled like time-varying

productivity, labor income taxes, and investment taxes. Since many models map into the

same configuration of wedges, identifying one particular configuration does not uniquely

identify a model; rather it identifies a whole class of models. Thus, the results are not

specific to any one detailed economy.

Households in the economy maximize expected utility over per capita consumption ct

and per capita labor lt,

E0

∞
∑

t=0

βt







(

ct (1 − lt)
ψ
)1−σ

− 1

(1 − σ)






Nt (2.1)

subject to the budget constraint and the capital accumulation law,

ct + (1 + τxt) xt = (1 − τlt)wtlt + rtkt + Tt (2.2)

(1 + gn) kt+1 = (1 − δ) kt + xt (2.3)

where kt denotes the per capita capital stock, xt per capita investment, wt the wage rate,

rt the rental rate on capital, β the discount factor, δ the depreciation rate of capital, Nt

the population with growth rate equal to 1+gn, and Tt the per capita lump-sum transfers.

The series τlt and τxt are stochastic and stand in for time-varying distortions that affect

the households’ intratemporal and intertemporal decisions. Chari et al. (2007) refer to τlt

as the labor wedge and τxt as the investment wedge.
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The firms’ production function is F (Kt, ZtLt) where K and L are aggregate capital

and labor inputs and Zt is a labor-augmenting technology parameter which is assumed

to be stochastic. Chari et al. (2007) call Zt the efficiency wedge and demonstrate an

equivalence between the prototype model with time-varying efficiency wedges and several

detailed economies with underlying frictions that cause factor inputs to be used inefficiently.

Here, I assume that the process for logZt is a unit-root with innovation log zt. The process

for the exogenous state vector st = [log zt, τlt, τxt]
′ is1

st = P0 + Pst−1 +Qεt (2.4)

=





gz
(1 − ρl) τl
(1 − ρx) τx



 +





0 0 0
0 ρl 0
0 0 ρx



 st−1 +





σz 0 0
0 σl 0
0 0 σx



 εt.

where εt = [εzt, εlt, εxt]
′ is the vector of shocks hitting the economy at date t.

Approximate equilibrium decision functions can be computed by log-linearizing the

first-order conditions and applying standard methods. (See, for example, Uhlig 1999.) The

equilibrium decision function for capital has the form

log k̂t+1 = γk log k̂t + γz log zt + γlτlt + γxτxt + γ0

≡ γk log k̂t + γ′sst + γ0 (2.5)

where k̂t = kt/Zt−1 is detrended capital. From the static first-order conditions, I also

derive decision functions for output, investment, and labor which I use later, namely,

log ŷt = φyk log k̂t + φ′ysst (2.6)

log x̂t = φxk log k̂t + φ′xsst (2.7)

log lt = φlk log k̂t + φ′lsst (2.8)

1 The assumption that the shocks are orthogonal is unrealistic for many actual economies, but adding
correlations makes it even more difficult for atheoretical approaches.
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where ŷt = yt/Zt, x̂t = xt/Zt, and the coefficient vectors φys, φxs, and φls that multiply

st in equations (2.6)-(2.8) are 3-dimensional. The coefficients in equations (2.5)-(2.8) are

funcitons of the underlying parameters of preferences and technology that appear in the

original household objective function (2.1) and constraints, (2.2)-(2.3).

2.1. Observables

In all representations later, I assume that the economic modeler has data on per capita

output, labor, and investment. Because output and investment grow over time, the vector

of observables is taken to be

Yt = [∆ log yt/lt log lt log xt/yt ]
′

.

The elements of Y are: the growth rate of log labor productivity, the log of the labor input,

and the log of the investment share.2 All elements of Y are stationary.

For the prototype model, these observables can be written as functions of St = [log k̂t,

st, st−1, 1]′. To see this, note that the change in log productivity is a function of the

state today (log k̂t, st, 1) and the state yesterday (log k̂t−1, st−1, 1). The capital stock at

the beginning of the last period log k̂t−1 can be written in terms of log k̂t and st−1 by

(2.5). The other observables depend only on today’s state (log k̂t, st, 1). Thus, all of the

observables can be written as a function of St, which is a 8 × 1 vector.

3. Three Statistical Representations

I use the form of decision functions for the prototype model to motivate three different

but related statistical representations of the economic time series.

2 I have chosen variables that business cycle researchers typically do, but other variations that I tried—
such as using output growth rather than labor productivity growth did not affect my results.
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3.1. A Restricted State Space Representation

The state space representation for the prototype model has the form

St+1 = A (Θ)St +B (Θ) εt+1, Eεtε
′

t = I

Yt = C (Θ)St (3.1)

where the parameter vector is

Θ = [i, gn, gz, δ, θ, ψ, σ, τl, τx, ρl, ρx, σl, σx]
′

.

Here, i is the interest rate and is used to set the discount factor β = exp(gz)
σ/(1 + i). I

use Θ to compute an equilibrium and then construct

A (Θ) =







γk γ′s 0 γ0

0 P 0 P0

0 I 0 0
0 0 0 1






, B (Θ) =







0
Q
0
0






(3.2)

C (Θ) =







(φyk − φlk) (1 − 1/γk) φlk φxk − φyk
φ′ys − φ′ls + 1′ φ′ls φ′xs − φ′ys

−φ′ys+φ
′

ls+(φyk−φlk) γ
′

s/γk 0 0
(φyk − φlk) γ0/γk φl0 φx0 − φy0







′

where 1 is a vector with 1 in the first element and zeros otherwise. Recall that P and Q

are 3 × 3 matrices. Thus, A(Θ) is an 8 × 8 matrix, B(Θ) is a 6 × 3 matrix, and C(Θ) is a

3 × 6. Elements of these matrices are functions of coefficients in (2.4)-(2.8).

Estimates Θ̂ are found by applying the method of maximum likelihood. The ex-

act likelihood function is computed using a Kalman filter algorithm. (See, for example,

Hamilton 1994.)

For the restricted state space representation, I consider three sets of restrictions on

the parameter space. In what I refer to as the “loose constraints” case, I assume that the

parameters in Θ can take on any value as long as an equilibrium can be computed. In
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what I refer to as the “modest constraints” case, I assume that the parameters in Θ are

constrained to be economically plausible. Finally, I consider a “tight constraints” case with

some parameters fixed during estimation. The parameters that are fixed are those that

are least controversial for business cycle theorists. They are the interest rate i, the growth

rates gn and gz, the depreciation rate δ, the capital share θ, and the mean tax rates τl and

τx. In the tight-constraints case, I only estimate the parameters affecting key elasticities,

namely, ψ and σ, and parameters affecting the stochastic processes for the shocks. There

is no consensus on the values for these parameters.

3.2. An Unrestricted State Space Representation

In the restricted state space representation, all cross-equations restrictions are imposed.

This necessitates making many assumptions about the economic environment. Suppose

instead that I assume only that the state of the economy evolves according to (2.4) and

(2.5), and that decisions take the form of (2.6)-(2.8).

In this case, I need not provide specific details of preferences and technologies. I do,

however, need to impose some minimal restrictions that imply the parameters of the state

space are identified. Let S̄t = [log k̄t, s̄t, s̄t−1]
′ where

log k̄t =
(

log k̂t − log k̂
)

/ (γzσz)

log z̄t = (log zt − log z) /σz

τ̄lt = (τlt − τl) /σl

τ̄xt = (τxt − τx) /σx

and s̄t = [log z̄t, τ̄lt, τ̄xt]. Then the unrestricted state space representation can be written

S̄t+1 = Au (Γ) S̄t +Buεt+1, Eεtε
′

t = I

Yt = Cu (Γ) S̄t (3.3)
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with

Au (Γ) =



















γk 1 γ̃l γ̃x 0 0 0
0 0 0 0 0 0 0
0 0 ρl 0 0 0 0
0 0 0 ρx 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0



















, Bu =



















0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



















(3.4)

and Cu(Γ) unrestricted (except for zero coefficients on s̄t−1 in the second and third rows).

The (1,3) element of Au(Γ) is γ̃l = γlσl/(γzσz). The (1,4) element is γ̃x = γxσx/(γzσz).

The vector to be estimated, Γ, is therefore given by

Γ =
[

γk, γ̃l, γ̃x, ρl, ρx, vec (Cu)
′
]

where the vec(Cu)
′ includes only the elements that are not a priori set to 0. As in the case

of the restricted state space representation, estimates are found by applying the method

of maximum likelihood. From this, I get Γ̂.

Proposition 1. The state space representation (3.3) is identified.

Proof. Applying the results of Wall (1984),3 if (A1
u, B

1
u, C

1
u) and (A2

u, B
2
u, C

2
u) are obser-

vationally equivalent state space representations, then they are related by A2
u = T−1A1

uT ,

B2
u = T−1B1

u, and C2
u = C1

uT . Identification obtains if the only matrix T satisfying these

equations is T = I. It is simple algebra to show that this is the case for the unrestricted

state space representation (3.3).

It is useful to compare the matrices for the restricted state space representation in

(3.2) and the unrestricted state space representation in (3.4). All coefficients in (3.2) are

functions of the business cycle model’s “deep structural” parameters Θ and must satisfy the

cross-equation restrictions imposed by the theory. On the other hand, the only structure

3 See Burmeister, Wall, and Hamilton (1986), Proposition 2.
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imposed on coefficients of the unrestricted state space in (3.4) are zero restrictions. I am

not imposing anything more.

3.3. A Vector Autoregression Moving Average Representation

Starting from the state space representation (3.1), the moving average for the prototype

model with observations Y is easily derived by recursive substitution. In particular, it is

given by

Yt = CBεt + CABεt−1 + CA2Bεt−2 + . . . . (3.5)

Assume that CB is invertible and let et = CBεt. Then I can rewrite (3.5) as

Yt = et + CAB (CB)
−1
et−1 + CA2B (CB)

−1
et−2 + . . .

≡ et + C1et + C2et−2 + . . . .

Assuming the moving average is invertible, Y can also be represented as an infinite-order

VAR,

Yt = B1Yt−1 +B2Yt−2 + . . .+ et (3.6)

where Bj = Cj −B1Cj−1 − . . .Bj−1C1.

Proposition 2. For the prototype economy, the implied VAR in (3.6) has the property that

M = BjB
−1

j−1
and therefore can be represented as a vector autoregressive moving average

representation of order (1,1), namely,

Yt = (B1 +M)Yt−1 + et −Met−1, Eete
′

t = Σ (3.7)

with Σ = CBB′C′.

Proof. See Chari et al. (2008).

Let Λ denote the vector of parameters to be estimated for the VARMA via maximum

likelihood, which are all of the elements of matrices B1, M , and Σ. If I allow these
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paramters to take on any values, it is possible that the system would be nonstationary or

noninvertible. I reparameterize the VARMA as described in Ansley and Kohn (1986) to

ensure stationarity and invertibility I also need to check that B1 has nonzero elements and

that [B1 + M,M ] has full rank to ensure that the matrices are statistically identifiable.

(See Hannan 1976.)

I now have three statistical representations that are consistent with the prototype

model: the restricted state space representation that makes explicit use of the details of

the underlying model and imposes these in cross-equation restrictions, the unrestricted

state space representation which imposes zero restrictions on the state space but no cross-

equation restrictions, and the VARMA(1,1) representation which uses only minimal infor-

mation about the reduced form of the system. For all three, it is straightforward to apply

the method of maximum likelihood.4

4. Setting up the laboratory

Before applying the estimation procedure, I first generate 1000 samples of data {Yt} using

the prototype business cycle model. Each sample is 200 quarters in length, which is

typical for actual applications. This is done by randomly drawing sequences for the shocks

{varepsilont}. These shocks, along with an intial value of the state s0, imply a sequence of

exogenous states {st} that statisfy (2.4). With an inital capital stock k̂0 and the sequence

{st}, I can use (2.6)-(2.8) to generate data for the business cycle model. For each sample,

the true parameters of the business cycle model are fixed and given by

Θ = [.01, .0025, .005, .015, .33, 1.8, 1.0, .25, .0, .95, .95, 1, 1, 1]
′

.

Using the restricted state space representation, I apply the method of maximum likelihood

4 Codes are available at my website. See Anderson et al. (1996) for more details on estimating dynamic
linear economies.
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to each of the 1000 samples. This procedure yields 1000 estimates Θ̂ of the parameter

vector. For each estimate, I can construct the coefficients of the model’s equilibrium

equations (2.4)-(2.8). With numerical values for these coefficients, I can then construct

the statistics that business cycle analysts care about which will be discussed later.

Similarly, I can apply the method of maximum likelihood in the case of the other two

statistical representations. For the unrestricted state space, the procedure yields estimates

for Γ̂ and, in turn, for Au(Γ̂) and Cu(Γ̂) of (3.3). For the VARMA(1,1), the procedure

yields estimates for Λ̂ and, in turn, B̂1, M̂ , and Σ̂ of (3.7). As before, once I have numerical

values for the coefficients in these equations, I can construct the statistics of interest for

business cycle analysts.

For the restricted state space representation, three levels of constraints on the pa-

rameter vector are investigated. Recall that the only restriction in the “loose constraints”

case is that an equilibrium exists. In the “modest constraints” case, I assume that the

parameter constraints are

[.0075, 0, .0025, 0, .25, .01, .01, .15,−.1,−1,−1, 0, 0, 0]

< Θ̂ < [.0125, .0075, .0075, .025, .45, 10, 10, .35, .1, 1, 1, 10, 10, 10] . (4.1)

This implies an annual rate of interest between 3 and 5 percent; an annual growth rate of

population between 0 and 3 percent; an annual growth rate of technology between 1 and

3 percent; an annual depreciation rate between 0 and 10 percent; a capital share between

25 and 45 percent; ψ and σ between 0.01 and 10; the mean labor wedge between 0.25

and 0.35; the mean investment wedge between −0.1 and 0.1; serial correlation coefficients

between −1 and 1; and standard deviations of the shocks between 0 and 10 percent. In the

“tight constraints” case, I fix the interest rate, the growth rates, the depreciation rate, the
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capital share, and the means of the tax rates during estimation and use bounds in (4.1)

for the other parameters.

5. Business cycle statistics

Statistics of interest for business cycle analysts include impulse response functions, variance

decompositions, autocorrelations, and cross-correlations. In this section, I use the three

representations (3.1), (3.3), and (3.7) to construct these statistics.

The first set of statistics are impulse responses of the three observables—growth in

labor productivity, the log of labor, and the log of the investment share—to 1 percent

shocks in each of the three shocks in εt. Here, I report the responses of productivity,

labor, and investment in the period of impact of the shock. In the restricted state space

representation, the impact of the shock is summarized by the elements of CB. Similarly, the

impact responses are summarized by CuBu for the unrestricted state space representation.

For the VARMA, one needs additional information to identify CB from the variance-

covariance Σ = (CB)(CB)′. A typical assumption made in the literature to identify the

first column of CB is to assume that demand shocks have no long run effect on labor

productivity. This assumption allows me to infer the first column of CB. (See Chari et

al. 2008.) However, it does not imply anything for the relative impacts of εlt and εxt. Since

these are not identifiable, they are not reported.

The impact coefficients of the impulse responses are reported in Table 1. The first

row shows the true value of each statistic. For example, in the model, productivity rises

by 0.58 percent in response to a 1 percent increase in εzt, labor rises by 0.27 percent, and

the investment share rises by 0.88 percent. Responses to shocks in εlt are shown in the

middle three columns, and responses to shocks in εxt are shown in the last three columns.
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In the next three rows, I report statistics based on the restricted state space repre-

sentation with varying degrees of tightness in the constraints imposed during maximum

likelihood estimation. The last two rows are the results for the unrestricted state space

representation and the VARMA(1,1) representation. In each case, the first number dis-

played is the mean estimate of the statistic averaged over the 1000 datasets. The second

number displayed below in parentheses is the root mean square error which is defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

ζ̂i − ζ
)2

.

In this formula, ζ̂i is the ith estimate of the statistic, i = 1, . . . , N , and ζ is the true value.

If there is no bias due to small samples, then ζ is equal to the mean of the estimates ζ̂i,

i = 1, . . . , N , and the RMSE is equal to the standard deviation.

It is clear from Table 1 that the differences in results for the restricted state space and

the other two representations are large. Consider first the means of the estimates. There

is little bias in the estimates for the restricted state space. This is especially true when

tight constraints are used during maximum likelihood estimation. However, even in the

case of modest constraints, the means of the estimates are very close to the true values

shown in the first row. For the unrestricted state space representation and the VARMA,

the biases are large. For example, all of the predicted responses following a technology

shock are significantly below the actual responses. In the case of the shocks to the labor

and investment wedges for the unrestricted state space model, large biases are also evident.

Next consider the root mean squared errors that appear in parentheses below the

means. As I remove restrictions, these errors grow large. Compare, for example, the

errors of the restricted state space representation with tight constraints with those of the

VARMA in columns one through three. The errors are so large in the latter case that

the impulse response predictions range from large negatives to large positives. In other
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words, the VARMA predictions are uninformative. Similarly, the unrestricted state space

has large root mean squared errors for all of the statistics reported in Table 1 and, like the

VARMA, is therefore uninformative about impulse responses.

To generate tight predictions, we need to impose the cross-equation restrictions as

long as the parameter estimates are restricted to lie in the economically plausible range.

When I allow all of the parameters to be completely free for the restricted state space

representation, I find that the root mean squared errors do get significantly larger. For

example, one can see a significant difference in the responses of labor and the investment

share.

The next statistics that I consider are variance decompositions. For a general state

space system of the form

St+1 = ASt +Bet+1 (5.1)

Yt = CSt (5.2)

with Eete
′

t = Σ, the population variances of the observables in Y are the diagonal elements

of the matrix V , where

V = AV A′ +BLL′B′.

where L is a lower triangular matrix that satisfies LL′ = Σ. In this case, the (i, i) element

of V is the variance of the ith variable in Y . The variance decomposition summarizes the

contribution of the variances due to each of the shocks in et. To be specific, let Vj be the

contribution of the variance of Y due to shock j. This is given by

Vj = AVjA
′ +BLΦjL

′B′

where Φj is a matrix with the same dimensions as Σ and one nonzero element, element

(j, j), that is equal to 1. In this case, the (i, i) element of Vj is the variance of the ith

variable in Y which is due to the jth shock. Note that V =
∑

j Vj .
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In the case of the VARMA(1,1), I can rewrite the system in (3.7) in the form of the

state space above, namely

St+1 =

[

B1 +M I
0 0

]

St +

[

I
−M

]

et+1

Yt = [ I 0 ]St

where the coefficients on St and et+1 can be mapped to A, B, and C in (5.1)-(5.2).

In Table 2, I report the predictions of the population variance decompositions. The

ordering of results in Table 2 is the same as in Table 1, with the most restrictive appearing

first and the least restrictive appearing last. Comparing the means of the statistics with

the actual values, we see that the biases are not as large for the variance decompositions as

they were for the impact coefficients of the impulse responses, with some exceptions for the

unrestricted state space. For example, the results show some bias for the decompositions

of labor and investment shares. However, in terms of the root mean squared errors, the

results for the unrestricted state space and VARMA representations again show that the

predictions are not informative. In effect, the range of variances is close to everything in

0 to 100 percent.

The third set of statistics are very common in the real business cycle literature that

typically reports statistics for filtered time series using the method of Hodrick and Prescott

(1997). Specifically, for each statistical representation and each set of parameter estimates,

I simulate 500 time series for output, labor, and investment of length 200. In each case,

the output and investment data are filtered because they are nonstationary. I then take

averages of standard deviations, autocorrelations, and cross-correlations over the 500 sim-

ulations. This is done for each representation and for each of the 1000 maximum likelihood

parameter vectors.

The implied statistics are reported in Table 3. Notice that the bias and root mean
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squared errors of the predictions are small for all representations. For example, in all cases,

the distribution of cross-correlations of output and labor has a mean of 0.89 and the largest

root mean square error is 0.02. Perhaps this is not too surprising given that we do not

need all of the details of a model to get an accurate prediction for unconditional moments.

The final set of statistics is related to those reported in Table 2. In Table 4, I report

the variance decompositions for the filtered data. This is a similar exercise to that done in

Table 2 but is included for easy comparison to estimates in the business cycle literature.

As before, the range of predictions for the unrestricted state space and the VARMA repre-

sentations is so large that they are uninformative. In the restricted state space model, the

estimates for the technology shock are very informative. This is true even for labor and

investment, whose variation depends little on technology shocks. The restricted state space

estimates for the labor shock imply that it contributes significantly to all three variables.

The restricted state space estimates for the investment shock are the least informative,

but still imply that εx has a big effect on investment.

6. Conclusion

In this paper, I conduct a simple small-sample study. I ask how much can business cycle

theorists learn from actual time series if they impose very little theory when applying their

statistical methods. The answer is very little.
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