

MEASUREMENT WITH MINIMAL THEORY

Ellen McGrattan

FEDERAL RESERVE BANK OF MINNEAPOLIS

July 2006

Working paper #643 available at minneapolisfed.org/research

CENTRAL QUESTIONS

- What are the driving forces of business cycles?
- Can we determine key forces using *minimal theory*?
- If so, then ultimately useful for
 - Isolating promising classes of models
 - Doing policy analysis

MINIMAL THEORY: HALL'S CONJECTURE

• Many DSGE models are representable as a VARMA

(1)
$$Y_t = B_1 Y_{t-1} + B_2 Y_{t-2} + \ldots + e_t$$
$$= (B_1 + M) Y_{t-1} + e_t - M e_{t-1}$$

with
$$Ee_t e'_t = \Sigma$$
, $M = B_j B_{j-1}^{-1}$, $j \ge 2$.

- Estimate (1) via MLE
- Can use it to compute IRFs and variance decompositions

GOOD IN THEORY, NOT IN PRACTICE

- Set up a laboratory
 - $\circ\,$ Map a DSGE model to a VARMA
 - $\circ~$ Simulate N datasets from the VARMA
 - $\circ\,$ Estimate a VARMA for each dataset
 - $\circ~$ Construct statistics of interest
- Show it's fine with $T = \infty$, not useful with T = 200
- Range of answers too wide to be a good guide

Imposing a Little More: C&K Conjecture

• Many DSGE models representable as a state space

$$X_{t+1} = AX_t + B\epsilon_t, \quad E\epsilon_t\epsilon'_t = I$$
$$Y_t = CX_t$$

with zero elements of A, B, C known a priori

- Estimate without imposing cross-equation restrictions
- Can use it to compute IRFs and variance decompositions

GOOD IN THEORY, NOT IN PRACTICE

- Set up a laboratory
 - Map a DSGE model to the SS model
 - $\circ~$ Simulate N datasets from the SS model
 - $\circ\,$ Estimate SS model for each dataset
 - Construct statistics of interest
- Show it's fine with $T = \infty$, not useful with T = 200


Imposing Even More: McGrattan's Conjecture

- Work directly with the DSGE model (Restricted SS)
- May even need tight bounds on parameters, e.g.,
 - Loose: impose no bounds
 - Modest: impose economically plausible bounds
 - Tight: estimate only controversial parameters

GOOD IN THEORY, AND IN PRACTICE

- Set up a laboratory
 - $\circ~$ Simulate N datasets from the DSGE model
 - Estimate "deep structural" parameters for each
 - Construct statistics of interest
- Show dramatic improvement with DSGE for T = 200

Setting up the LAB $% \left({{{\rm{A}}} \right)$

PROTOTYPE ECONOMY

• The state vector is $[\log \hat{k}_t, s_t, 1]$ with

$$\log \hat{k}_{t+1} = \gamma_0 + \gamma_k \log \hat{k}_t + \gamma'_s s_t$$
$$s_{t+1} = P_0 + Ps_t + Q\epsilon_{t+1}$$
where $\log \hat{k}_t$ is detrended capital, s_t are shocks

• Observables in estimation are:

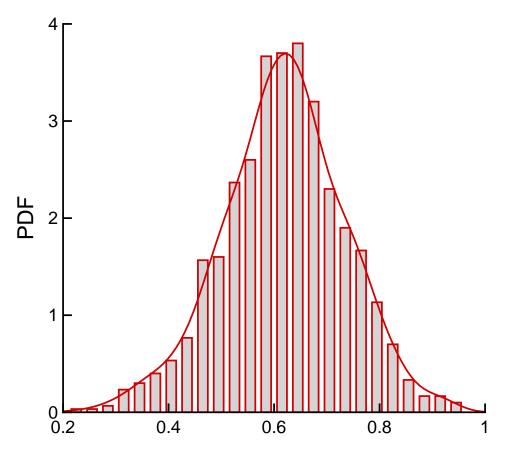
$$Y_t = CX_t, \quad X_t = [\log \hat{k}_t, s_t, s_{t-1}, 1]'$$

• CKM show equivalence of many models to prototype

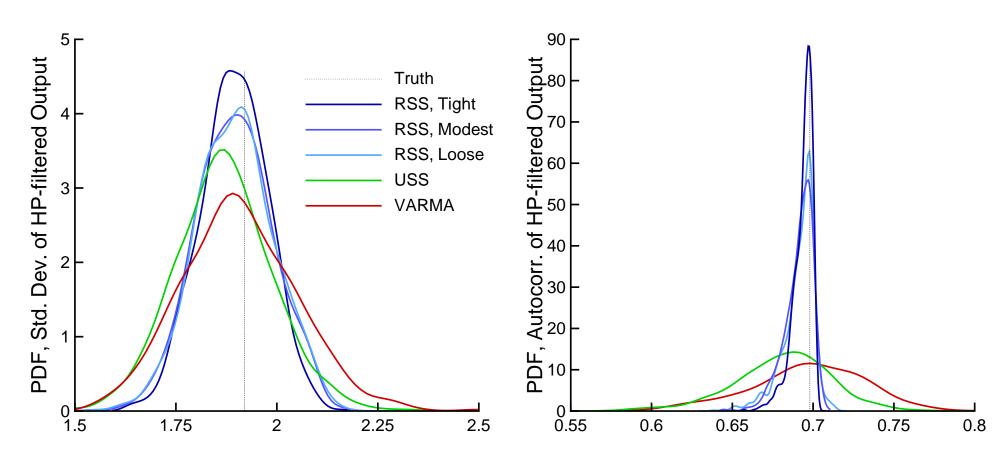

Some Details

- Preferences: $(c(1-l)^{\psi})^{1-\sigma}/(1-\sigma)$
- Technology: Cobb-Douglas in capital/labor
- 3 shocks (all with innovation variance = 1%):
 - Unit-root technology
 - Labor wedge, AR(1) with $\rho = .95$
 - $\circ~$ Investment wedge, AR(1) with $\rho=.95$
- 3 observables:
 - Growth in log labor productivity
 - \circ Log of hours per person
 - Log of investment share

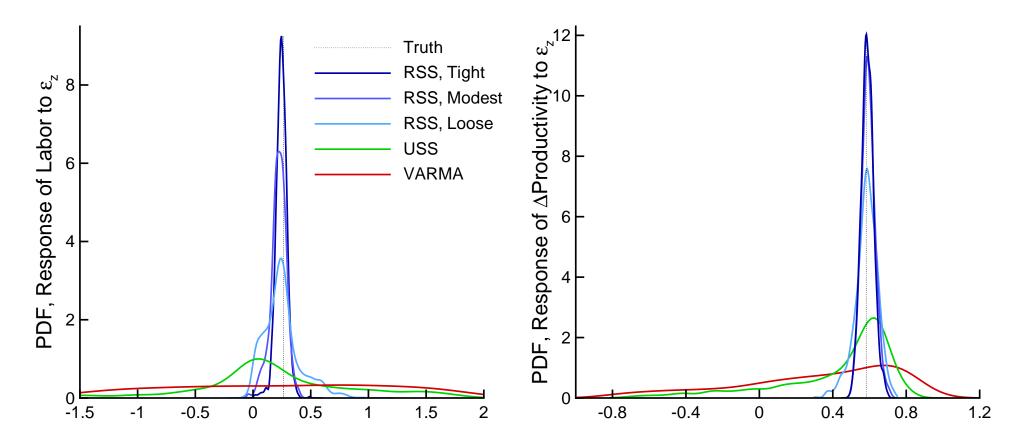
STATISTICS OF INTEREST


- Impulse responses of observables
- Variance decompositions of observables
- K-P statistics for HP-filtered output, hours, investment
 - Standard deviations
 - \circ Autocorrelations
 - \circ Cross-correlations
 - Variance decompositions

Results

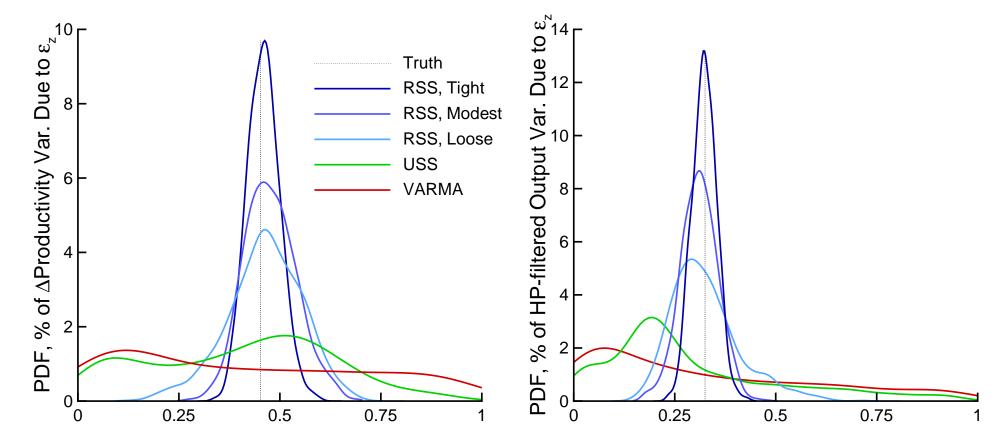

DISPLAYING THE RESULTS

- Use kernel estimates to smooth
- Drop histogram when showing results


STATISTICS FOR HP-FILTERED OUTPUT

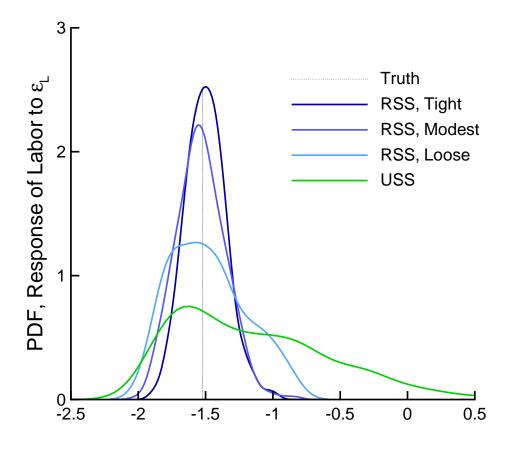
- All do well with SDs
- Some differences with ACs

Responses to Technology on Impact



• VARMA and USS completely uninformative

• Whether or not technology is important shock


VARIANCE DECOMPOSITIONS

- VARMA and USS completely uninformative
- Whether or not data unfiltered or filtered

Effects of Policy

- VARMA result not identifiable without more theory
- Need at least modest bounds in SS for policy analysis

- Imposing little theory, yields little
- Even with DSGEs, may need parameter constraints
- Ultimately essential for
 - $\circ\,$ Isolating promising classes of models
 - Doing policy analysis