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ABSTRACT

A central debate in applied macroeconomics is whether statistical tools that use minimal

identifying assumptions are useful for isolating promising models within a broad class. In

this paper, I compare three statistical models—a vector autoregressive moving average

(VARMA) model, an unrestricted state space model, and a restricted state space model—

that are all consistent with the same prototype business cycle model. The business cycle

model is a prototype in the sense that many models, with various frictions and shocks, are

observationally equivalent to it. The statistical models I consider differ in the amount of a

priori theory that is imposed, with VARMAs imposing minimal assumptions and restricted

state space models imposing the maximal. The objective is to determine if it is possible to

successfully uncover statistics of interest for business cycle theorists with sample sizes used

in practice and only minimal identifying assumptions imposed. I find that the identifying

assumptions of VARMAs and unrestricted state space models are too minimal: The range

of estimates are so large as to be uninformative for most statistics that business cycle

researchers need to distinguish alternative theories.
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1. Introduction

A central debate in applied macroeconomics is whether statistical tools that use minimal

identifying assumptions are useful for isolating promising models within a broad class. In

this paper, I compare three statistical models—a vector autoregressive moving average

(VARMA) model, an unrestricted state space model, and a restricted state space model—

that are all consistent with the same prototype business cycle model. The business cycle

model is a prototype in the sense that many models, with various frictions and shocks, are

observationally equivalent to it. The statistical models I consider differ in the amount of a

priori theory that is imposed, with VARMAs imposing minimal assumptions and restricted

state space models imposing the maximal. The objective is to determine if it is possible

to successfully uncover statistics of interest for business cycle theorists with sample sizes

used in practice and only minimal identifying assumptions imposed.

I find that the identifying assumptions of VARMAs and unrestricted state space mod-

els are too minimal for practical sample sizes: The range of estimates are so large as to be

uninformative for most statistics that business cycle researchers need to distinguish alter-

native theories. I demonstrate this by simulating 1000 datasets and applying the method

of maximum likelihood to the different statistical representations for the same data. The

sample sizes are two hundred periods, which is typical for real applications. The parameter

estimates are used to construct standard statistics analyzed in the business cycle literature.

They include impulse responses, variance decompositions, and second moments of filtered

nonstationary series. Not surprising, the largest ranges are found for conditional moments

such as impulse responses and variance decompositions.

In Section 2, I lay out the prototype growth model. Section 3 summarizes the three

representations I use when applying maximum likelihood. Section 4 discusses the statistics

computed using the maximum likelihood estimates. Section 5 concludes.
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2. The Prototype Model

I use a prototype growth model as the data generating process for this study. The model is

a prototype in the sense that a large class of models, including those with various types of

frictions and various sources of shocks, are equivalent to a growth model with time-varying

wedges that distort the equilibrium decisions of agents operating in otherwise competitive

markets. (See Chari et al. 2006.) These wedges look like time-varying productivity, labor

income taxes, and investment taxes. Since many models map into the same configuration

of wedges, identifying one particular configuration does not uniquely identify a model;

rather it identifies a whole class of models. Thus, the results are not specific to any one

detailed economy.

Households in the economy maximize expected utility over per capita consumption ct

and per capita labor lt,

E0

∞
∑

t=0

βt
[

(ct(1 − lt)
ψ)1−σ − 1

(1 − σ)

]

Nt

subject to the budget constraint and the capital accumulation law,

ct + (1 + τxt)xt = (1 − τlt)wtlt + rtkt + Tt

(1 + gn)kt+1 = (1 − δ)kt + xt

where kt denotes the per capita capital stock, xt per capita investment, wt the wage rate,

rt the rental rate on capital, β the discount factor, δ the depreciation rate of capital, Nt

the population with growth rate equal to 1+gn, and Tt the per capita lump-sum transfers.

The series τlt and τxt are stochastic and stand in for time-varying distortions that affect

the households’ intratemporal and intertemporal decisions. Chari et al. (2006) refer to τlt

as the labor wedge and τxt as the investment wedge.

The firms’ production function is F (Kt, ZtLt) where K and L are aggregate capital

and labor inputs and Zt is a labor-augmenting technology parameter which is assumed to be
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stochastic. Chari et al. (2006) call Zt the efficiency wedge and demonstrate an equivalence

between the prototype model with time-varying efficiency wedges and several detailed

economies with underlying frictions that cause factor inputs to be used inefficiently. Here,

I assume that the process for logZt is a unit-root with innovation log zt.
1 The process for

the exogenous state vector st = [log zt, τlt, τxt]
′ is2

st = P0 + Pst−1 +Qεt (2.1)

=





gz
(1 − ρl)τl
(1 − ρx)τx



 +





0 0 0
0 ρl 0
0 0 ρx



 st−1 +





σz 0 0
0 σl 0
0 0 σx



 εt.

Approximate equilibrium decision functions can be computed by log-linearizing the

first-order conditions and applying standard methods. (See, for example, Uhlig 1999.) The

equilibrium decision function for capital has the form

log k̂t+1 = γk log k̂t + γz log zt + γlτlt + γxτxt + γ0

≡ γk log k̂t + γ′sst + γ0 (2.2)

where k̂t = kt/Zt−1 is detrended capital. From the static first-order conditions, I also

derive decision functions for output, investment, and labor which I use later, namely,

log ŷt = φyk log k̂t + φ′ysst (2.3)

log x̂t = φxk log k̂t + φ′xsst (2.4)

log lt = φlk log k̂t + φ′lsst (2.5)

where ŷt = yt/Zt and x̂t = xt/Zt.

1 In a separate appendix, I provide a summary of how all results change when I assume technology is
Zt = zt(1 + gz)t with log zt equal to an AR(1) process.

2 The assumption that the shocks are orthogonal is unrealistic for many actual economies. Adding
correlations make it more difficult for atheoretical approaches.
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2.1. Observables

In all representations later, I assume that the economic modeler has data on per capita

output, labor, and investment. Because output and investment grow over time, the vector

of observables is taken to be

Yt = [∆ log yt/lt log lt logxt/yt ]
′

.

The elements of Y are: the growth rate of log labor productivity, the log of the labor input,

and the log of the investment share. All elements of Y are stationary.

For the prototype model, these observables can be written as functions of St = [log k̂t,

st, st−1, 1]′. To see this, note that the change in log productivity is a function of the

state today (log k̂t, st, 1) and the state yesterday (log k̂t−1, st−1, 1). The capital stock at

the beginning of the last period log k̂t−1 can be written in terms of log k̂t and st−1 by

(2.2). The other observables depend only on today’s state (log k̂t, st, 1). Thus, all of the

observables can be written as a function of St.

3. Three Statistical Representations

I use the form of decision functions for the prototype model to motivate three different

but related statistical representations of the economic time series.

3.1. A Restricted State Space Model

The state space model for the prototype model has the form

St+1 = A(Θ)St +B(Θ)εt+1, Eεtε
′

t = I

Yt = C(Θ)St (3.1)
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where the parameter vector is

Θ = [i, gn, gz, δ, θ, ψ, σ, τl, τx, ρl, ρx, σl, σx]
′.

Here, i is the interest rate and is used to set the discount factor β = exp(gz)
σ/(1 + i). I

use Θ to compute an equilibrium and then construct

A(Θ) =







γk γ′s 0 γ0

0 P 0 P0

0 I 0 0
0 0 0 1






, B(Θ) =







0
Q
0
0







C(Θ) =







(φyk − φlk)(1 − 1/γk) φlk φxk − φyk
φ′ys − φ′ls + 1′ φ′ls φ′xs − φ′ys

−φ′ys+φ
′

ls+(φyk−φlk)γ
′

s/γk 0 0
(φyk − φlk)γ0/γk φl0 φx0 − φy0







′

where 1 is a vector with 1 in the first element and zeros otherwise.

Estimates Θ̂ are found by applying the method of maximum likelihood. The ex-

act likelihood function is computed using a Kalman filter algorithm. (See, for example,

Hamilton 1994.)

For the restricted state space model, I consider three sets of restrictions on the param-

eter space. In what I refer to as the “loose constraints” case, I assume that the parameters

in Θ can take on any value as long as an equilibrium can be computed. In what I refer

to as the “modest constraints” case, I assume that the parameters in Θ are constrained

to be economically plausible. Finally, I consider a “tight constraints” case with some pa-

rameters fixed during estimation. The parameters that are fixed are those that are least

controversial for business cycle theorists. They are the interest rate i, the growth rates gn

and gz, the depreciation rate δ, the capital share θ, and the mean tax rates τl and τx. In

the tight-constraints case, I only estimate the parameters affecting key elasticities, namely,

ψ and σ, and parameters affecting the stochastic processes for the shocks. There is no

consensus on the values for these parameters.
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3.2. An Unrestricted State Space Model

In the restricted state space model, all cross-equations restrictions are imposed on the

state space model. This necessitates making many assumptions about the economic en-

vironment. Suppose instead that I assume only that the state of the economy evolves

according to (2.1) and (2.2), and that decisions take the form of (2.3)-(2.5).

In this case, I need not provide specific details of preferences and technologies. I do,

however, need to impose some minimal restrictions that imply the state space is identified.

Let S̄t = [log k̄t, s̄t, s̄t−1]
′ where

log k̄t = (log k̂t − log k̂)/(γzσz)

log z̄t = (log zt − log z)/σz

τ̄lt = (τlt − τl)/σl

τ̄xt = (τxt − τx)/σx

and s̄t = [log z̄t, τ̄lt, τ̄xt]. Then the unrestricted state space model can be written

S̄t+1 = Au(Γ)S̄t + Buεt+1, Eεtε
′

t = I

Yt = Cu(Γ)S̄t (3.2)

with

Au(Γ) =























γk 1 γ̃l γ̃x 0 0 0
0 0 0 00 0 0
0 0 ρl 0 0 0 0
0 0 0 ρx 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0























, Bu =



















0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



















and Cu(Γ) unrestricted (except for zero coefficients on s̄t−1 in the second and third rows).

The (1,3) element of Au(Γ) is γ̃l = γlσl/(γzσz). The (1,4) element is γ̃x = γxσx/(γzσz).
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The vector to be estimated, Γ, is therefore given by

Γ = [γk, γ̃l, γ̃x, ρl, ρx, vec(Cu)
′]

where the vec(Cu)
′ includes only the elements that are not a priori set to 0. As in the

case of the restricted state space model, estimates are found by applying the method of

maximum likelihood. From this, I get Γ̂.

Proposition 1. The state space model (3.2) is identified.

Proof. Applying the results of Wall (1984),3 if (A1
u, B

1
u, C

1
u) and (A2

u, B
2
u, C

2
u) are obser-

vationally equivalent state space representations, then they are related by A2
u = T−1A1

uT ,

B2
u = T−1B1

u, and C2
u = C1

uT . Identification obtains if the only matrix T satisfying these

equations is T = I. It is simple algebra to show that this is the case for the unrestricted

state space model (3.2).

3.3. A Vector Autoregression Moving Average Model

Starting from the state space representation (3.1), the moving average for the prototype

model with observations Y is easily derived by recursive substitution. In particular, it is

given by

Yt = CBεt + CABεt−1 + CA2Bεt−2 + . . . . (3.3)

Assume that CB is invertible and let et = CBεt. Then I can rewrite (3.3) as

Yt = et + CAB(CB)−1et−1 + CA2B(CB)−1et−2 + . . .

≡ et + C1et + C2et−2 + . . . .

Assuming the moving average is invertible, Y can also be represented as an infinite-order

VAR,

Yt = B1Yt−1 +B2Yt−2 + . . .+ et (3.4)

3 See Burmeister, Wall, and Hamilton (1986), Proposition 2.
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where Bj = Cj −B1Cj−1 − . . .Bj−1C1.

Proposition 2. For the prototype economy, the implied VAR in (3.4) has the property that

M = BjB
−1

j−1
and therefore can be represented as a vector autoregressive moving average

model of order (1,1), namely,

Yt = (B1 +M)Yt−1 + et −Met−1, Eete
′

t = Σ (3.5)

with Σ = CBB′C ′.

Proof. See Chari et al. (2005).

The elements of matrices B1, M , and Σ can be estimated via maximum likelihood. To

ensure stationarity and invertibility, I reparameterize the VARMA as described in Ansley

and Kohn (1986). To ensure that the matrices are statistically identifiable, I also need to

check that B1 has nonzero elements and that [B1 + M,M ] has full rank. (See Hannan

1976.)

I now have three statistical representations that are consistent with the prototype

model. The VARMA(1,1) which imposes very minimal theory, the unrestricted state space

model which imposes a little more structure, and the restricted state space model that

makes explicit use of the details of the underlying model and imposes these in cross-

equation restrictions. In the next section I estimate the parameters of these models and

use the results to construct statistics of interest for business cycle theorists. I compare the

sampling properties of the three statistical representations to see how much can be learned

from each.

4. Results

Business cycle theorists use impulse response functions, variance decompositions, autocor-
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relations, and cross-correlations to determine which classes of economic models are most

promising. In this section, I consider how much can be learned about these statistics from

the three statistical representations that are consistent with my prototype model. If the

sample size is infinite, all statistical procedures will uncover the true statistics because none

is misspecified. But, in practice, sample sizes are no greater than two hundred periods.

Thus, I draw simulations of length 200, the length typically used in practice.

Specifically, I draw 1000 simulated datasets for the prototype economy and, for each

draw, estimate parameters for the three statistical representations. In all cases, the pa-

rameters of the underlying economy, Θ, are fixed. They are set at

Θ = [.01, .0025, .005, .015, .33, 1.8, 1.0, .25, .0, .95, .95, 1, 1, 1]′

and correspond to quarterly frequencies. I assume that the parameter constraints used in

the “modest constraints” case of the restricted state space model are

[.0075, 0, .0025, 0, .25, .01, .01, .15,−.1,−1,−1, 0, 0, 0]

< Θ̂ < [.0125, .0075, .0075, .025, .45, 10, 10, .35, .1, 1, 1, 10, 10, 10].

This implies an annual rate of interest between 3 and 5 percent; an annual growth rate of

population between 0 and 3 percent; an annual growth rate of technology between 1 and

3 percent; an annual depreciation rate between 0 and 10 percent; a capital share between

25 and 45 percent; ψ and σ between 0.01 and 10; the mean labor wedge between 0.25

and 0.35; the mean investment wedge between −0.1 and 0.1; serial correlation coefficients

between −1 and 1; and standard deviations of the shocks between 0 and 10 percent.

In the case of the restricted state space model, the estimation yields Θ̂ which can

be used to construct (Â, B̂, Ĉ) for (3.1). In the case of the unrestricted state space, the

estimation yields Γ̂ which can be used to construct (Âu, Ĉu) in (3.2). In the case of
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the VARMA model, the estimation yields (B̂1, M̂ , Σ̂) in (3.5). Given these parameter

estimates, I then construct the statistics of interest.

The first set of statistics are impulse responses of the three observables—growth in

labor productivity, the log of labor, and the log of the investment share—to 1 percent

shocks in each of the three shocks in εt. In the restricted state space model, the impact

of the shock is summarized by the elements of CB. Similarly, the impact responses are

summarized by CuBu for the unrestricted state space model. For the VARMA, one needs

additional information to identify CB from the variance-covariance Σ = (CB)(CB)′. A

typical assumption made in the literature to identify the first column of CB is to assume

that demand shocks have no long run effect on labor productivity. This assumption allows

me to infer the first column of CB. (See Chari et al. 2005.) However, it does not imply

anything for the relative impacts of εlt and εxt.

In Table 1, I report the impact coefficients of the impulse responses. The first row

is the true value. For example, in the model, labor rises by 0.27 percent in response to a

shock to the efficiency wedge and falls by 1.52 percent in response to a shock to the labor

wedge. In the next three rows, I report statistics based on the restricted state space model

with varying constraints. The last two rows are the results for the unrestricted state space

model and the VARMA(1,1).

The results show a huge disparity between the models with minimal identifying

assumptions—represented by the VARMA model and the unrestricted state space model—

and maximal identifying assumptions—represented by the restricted state space model

with tight constraints. For example, based on estimates of the VARMA model, 95 percent

of the responses of productivity growth to a technology shock are in the range of −0.7

percent to .85 percent. Ninety-five percent of the responses of labor to a technology shock
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are in the range of −1.47 percent to 1.74 percent. Ninety-five percent of the responses

of the investment share to a technology shock are in the range of −2.59 percent to 3.75

percent. The range of these estimates is too large to be informative for business cycle

theorists.

Comparing the modest and tight constraints case for the restrictive state space model,

I find that these specifications yield very similar results. The difference in estimation was

the treatment of many parameters for which there is a lot of consensus, such as the capital

share. In the restricted case they were fixed and in the modest constraints case they were

estimated, but had economically plausible constraints. When I allow all of the parameters

to be completely free, I find that for some statistics the ranges do get significantly larger.

For example, one can see a significant difference in the responses of labor and the investment

share.

What Table 1 also shows is that even when there is a lot of theory imposed, there can

be a wide range of estimates for some statistics. For example, the impact coefficient for

the response of the investment share to the labor wedge shock shows that 95 percent of

the responses are between −0.95 percent and −2.77 percent, which is a wide range.

Table 2 shows results for the variance decompositions. The ordering of results is the

same as in Table 1, with the most restrictive appearing first and the least appearing last.

Again the striking aspect of the results is how uninformative the unrestricted state space

model and VARMA model are. The means of the VARMA results for the technology

shock are very close to the truth but the range is close to [0,100], which is completely

uninformative.

The third set of statistics are very common in the real business cycle literature that

typically reports statistics for HP-filtered time series. Specifically, for each statistical rep-
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resentation and each set of parameter estimates, I simulate 500 time series for output,

labor, and investment of length 200. In each case, the output and investment data are

filtered because they are nonstationary. I then take averages of standard deviations, auto-

correlations, and cross-correlations over the 500 simulations. This is done for each model

and for each of the 1000 MLE parameter vectors. These are the statistics reported in Table

3.

Notice that range of estimates is small for all models in this case. For example, in

all cases, the distribution of cross-correlations of output and labor has a mean of 0.89 and

the largest range of estimates is [.85,.92]. Perhaps this is not too surprising given that we

do not need all of the details of a model to get an accurate prediction for unconditional

moments.

The final set of statistics is related to those reported in Table 2. In Table 4, I report

the variance decompositions for the HP-filtered data.4 As before, the range of estimates

for the unrestricted state space model and the VARMA model are so large that they are

uninformative. In the restricted state space model, the estimates for the technology shock

are very informative. This is true even for labor and investment, whose variation depends

little on technology shocks. The restricted state space estimates for the labor shock imply

that it contributes significantly to all three variables. The restricted state space estimates

for the investment shock are least informative, but still imply that εx has a big effect on

investment.

5. Conclusion

In this paper, I conduct a simple small-sample study. I ask how much can business cycle

4 This is a similar exercise to that done in Table 2 but is included for easy comparison to estimates in
the business cycle literature.
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theorists learn from actual time series if they impose very little theory when applying their

statistical methods. The answer is very little.
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