SB04QD

Solution of discrete-time Sylvester equations (Hessenberg-Schur method)

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To solve for X the discrete-time Sylvester equation

     X + AXB = C,

  where A, B, C and X are general N-by-N, M-by-M, N-by-M and
  N-by-M matrices respectively. A Hessenberg-Schur method, which
  reduces A to upper Hessenberg form, H = U'AU, and B' to real
  Schur form, S = Z'B'Z (with U, Z orthogonal matrices), is used.

Specification
      SUBROUTINE SB04QD( N, M, A, LDA, B, LDB, C, LDC, Z, LDZ, IWORK,
     $                   DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDB, LDC, LDWORK, LDZ, M, N
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), Z(LDZ,*)

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the matrix A.  N >= 0.

  M       (input) INTEGER
          The order of the matrix B.  M >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the coefficient matrix A of the equation.
          On exit, the leading N-by-N upper Hessenberg part of this
          array contains the matrix H, and the remainder of the
          leading N-by-N part, together with the elements 2,3,...,N
          of array DWORK, contain the orthogonal transformation
          matrix U (stored in factored form).

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading M-by-M part of this array must
          contain the coefficient matrix B of the equation.
          On exit, the leading M-by-M part of this array contains
          the quasi-triangular Schur factor S of the matrix B'.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,M).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,M)
          On entry, the leading N-by-M part of this array must
          contain the coefficient matrix C of the equation.
          On exit, the leading N-by-M part of this array contains
          the solution matrix X of the problem.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,N).

  Z       (output) DOUBLE PRECISION array, dimension (LDZ,M)
          The leading M-by-M part of this array contains the
          orthogonal matrix Z used to transform B' to real upper
          Schur form.

  LDZ     INTEGER
          The leading dimension of array Z.  LDZ >= MAX(1,M).

Workspace
  IWORK   INTEGER array, dimension (4*N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK, and DWORK(2), DWORK(3),..., DWORK(N) contain
          the scalar factors of the elementary reflectors used to
          reduce A to upper Hessenberg form, as returned by LAPACK 
          Library routine DGEHRD. 

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK = MAX(1, 2*N*N + 9*N, 5*M, N + M).
          For optimum performance LDWORK should be larger.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          > 0:  if INFO = i, 1 <= i <= M, the QR algorithm failed t
                compute all the eigenvalues of B (see LAPACK Library
                routine DGEES);
          > M:  if a singular matrix was encountered whilst solving
                for the (INFO-M)-th column of matrix X.

Method
  The matrix A is transformed to upper Hessenberg form H = U'AU by
  the orthogonal transformation matrix U; matrix B' is transformed
  to real upper Schur form S = Z'B'Z using the orthogonal
  transformation matrix Z. The matrix C is also multiplied by the
  transformations, F = U'CZ, and the solution matrix Y of the
  transformed system

     Y + HYS' = F

  is computed by back substitution. Finally, the matrix Y is then
  multiplied by the orthogonal transformation matrices, X = UYZ', in
  order to obtain the solution matrix X to the original problem.

References
  [1] Golub, G.H., Nash, S. and Van Loan, C.F.
      A Hessenberg-Schur method for the problem AX + XB = C.
      IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

  [2] Sima, V.
      Algorithms for Linear-quadratic Optimization.
      Marcel Dekker, Inc., New York, 1996.

Numerical Aspects
                                      3       3      2         2
  The algorithm requires about (5/3) N  + 10 M  + 5 N M + 2.5 M N
  operations and is backward stable.

Further Comments
  None
Example

Program Text

*     SB04QD EXAMPLE PROGRAM TEXT
*     RELEASE 5.0, SLICOT COPYRIGHT 2000.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX
      PARAMETER        ( NMAX = 20, MMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDZ
      PARAMETER        ( LDA = NMAX, LDB = MMAX, LDC = NMAX,
     $                   LDZ = MMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = 4*NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( 1, 2*NMAX*NMAX+9*NMAX, 5*MMAX,
     $                   NMAX+MMAX ) )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, M, N
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,MMAX),
     $                 DWORK(LDWORK), Z(LDZ,MMAX)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         SB04QD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99994 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99993 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,M )
            READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,M ), I = 1,N )
*           Find the solution matrix X.
            CALL SB04QD( N, M, A, LDA, B, LDB, C, LDC, Z, LDZ, IWORK,
     $                   DWORK, LDWORK, INFO )
*
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               WRITE ( NOUT, FMT = 99997 )
               DO 20 I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,M )
   20          CONTINUE
               WRITE ( NOUT, FMT = 99995 )
               DO 40 I = 1, M
                  WRITE ( NOUT, FMT = 99996 ) ( Z(I,J), J = 1,M )
   40          CONTINUE
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB04QD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB04QD = ',I2)
99997 FORMAT (' The solution matrix X is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The orthogonal matrix Z is ')
99994 FORMAT (/' N is out of range.',/' N = ',I5)
99993 FORMAT (/' M is out of range.',/' M = ',I5)
      END
Program Data
 SB04QD EXAMPLE PROGRAM DATA
   3     3
   1.0   2.0   3.0 
   6.0   7.0   8.0 
   9.0   2.0   3.0 
   7.0   2.0   3.0 
   2.0   1.0   2.0 
   3.0   4.0   1.0 
   271.0   135.0   147.0
   923.0   494.0   482.0
   578.0   383.0   287.0
Program Results
 SB04QD EXAMPLE PROGRAM RESULTS

 The solution matrix X is 
   2.0000   3.0000   6.0000
   4.0000   7.0000   1.0000
   5.0000   3.0000   2.0000

 The orthogonal matrix Z is 
   0.8337   0.5204  -0.1845
   0.3881  -0.7900  -0.4746
   0.3928  -0.3241   0.8606

Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.

Return to index