INTEGER FUNCTION ISAMAX(N,SX,INCX) C***BEGIN PROLOGUE ISAMAX C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE ISAMAX C REAL SX(*),SMAX,XMAG C***FIRST EXECUTABLE STATEMENT ISAMAX ISAMAX = 0 IF(N.LE.0) RETURN ISAMAX = 1 IF(N.LE.1)RETURN IF(INCX.EQ.1)GOTO 20 C C CODE FOR INCREMENTS NOT EQUAL TO 1. C SMAX = ABS(SX(1)) NS = N*INCX II = 1 DO 10 I=1,NS,INCX XMAG = ABS(SX(I)) IF(XMAG.LE.SMAX) GO TO 5 ISAMAX = II SMAX = XMAG 5 II = II + 1 10 CONTINUE RETURN C C CODE FOR INCREMENTS EQUAL TO 1. C 20 SMAX = ABS(SX(1)) DO 30 I = 2,N XMAG = ABS(SX(I)) IF(XMAG.LE.SMAX) GO TO 30 ISAMAX = I SMAX = XMAG 30 CONTINUE RETURN END REAL FUNCTION SASUM(N,SX,INCX) C***BEGIN PROLOGUE SASUM C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SASUM C REAL SX(*) C***FIRST EXECUTABLE STATEMENT SASUM SASUM = 0.0E0 IF(N.LE.0)RETURN IF(INCX.EQ.1)GOTO 20 C C CODE FOR INCREMENTS NOT EQUAL TO 1. C NS = N*INCX DO 10 I=1,NS,INCX SASUM = SASUM + ABS(SX(I)) 10 CONTINUE RETURN C C CODE FOR INCREMENTS EQUAL TO 1. C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 6. C 20 M = MOD(N,6) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SASUM = SASUM + ABS(SX(I)) 30 CONTINUE IF( N .LT. 6 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,6 SASUM = SASUM + ABS(SX(I)) + ABS(SX(I + 1)) + ABS(SX(I + 2)) 1 + ABS(SX(I + 3)) + ABS(SX(I + 4)) + ABS(SX(I + 5)) 50 CONTINUE RETURN END SUBROUTINE SAXPY(N,SA,SX,INCX,SY,INCY) C***BEGIN PROLOGUE SAXPY C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SAXPY C REAL SX(*),SY(*),SA C***FIRST EXECUTABLE STATEMENT SAXPY IF(N.LE.0.OR.SA.EQ.0.E0) RETURN IF(INCX.EQ.INCY) IF(INCX-1) 5,20,60 5 CONTINUE C C CODE FOR NONEQUAL OR NONPOSITIVE INCREMENTS. C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SY(IY) + SA*SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 4. C 20 M = MOD(N,4) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SY(I) = SY(I) + SA*SX(I) 30 CONTINUE IF( N .LT. 4 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,4 SY(I) = SY(I) + SA*SX(I) SY(I + 1) = SY(I + 1) + SA*SX(I + 1) SY(I + 2) = SY(I + 2) + SA*SX(I + 2) SY(I + 3) = SY(I + 3) + SA*SX(I + 3) 50 CONTINUE RETURN C C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS. C 60 CONTINUE NS = N*INCX DO 70 I=1,NS,INCX SY(I) = SA*SX(I) + SY(I) 70 CONTINUE RETURN END SUBROUTINE SCOPY(N,SX,INCX,SY,INCY) C***BEGIN PROLOGUE SCOPY C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SCOPY C REAL SX(*),SY(*) C***FIRST EXECUTABLE STATEMENT SCOPY IF(N.LE.0)RETURN IF(INCX.EQ.INCY) IF(INCX-1) 5,20,60 5 CONTINUE C C CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS. C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N SY(IY) = SX(IX) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 7. C 20 M = MOD(N,7) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SY(I) = SX(I) 30 CONTINUE IF( N .LT. 7 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,7 SY(I) = SX(I) SY(I + 1) = SX(I + 1) SY(I + 2) = SX(I + 2) SY(I + 3) = SX(I + 3) SY(I + 4) = SX(I + 4) SY(I + 5) = SX(I + 5) SY(I + 6) = SX(I + 6) 50 CONTINUE RETURN C C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS. C 60 CONTINUE NS = N*INCX DO 70 I=1,NS,INCX SY(I) = SX(I) 70 CONTINUE RETURN END REAL FUNCTION SDOT(N,SX,INCX,SY,INCY) C***BEGIN PROLOGUE SDOT C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SDOT C REAL SX(*),SY(*) C***FIRST EXECUTABLE STATEMENT SDOT SDOT = 0.0E0 IF(N.LE.0)RETURN IF(INCX.EQ.INCY) IF(INCX-1)5,20,60 5 CONTINUE C C CODE FOR UNEQUAL INCREMENTS OR NONPOSITIVE INCREMENTS. C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N SDOT = SDOT + SX(IX)*SY(IY) IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5. C 20 M = MOD(N,5) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SDOT = SDOT + SX(I)*SY(I) 30 CONTINUE IF( N .LT. 5 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,5 SDOT = SDOT + SX(I)*SY(I) + SX(I + 1)*SY(I + 1) + 1 SX(I + 2)*SY(I + 2) + SX(I + 3)*SY(I + 3) + SX(I + 4)*SY(I + 4) 50 CONTINUE RETURN C C CODE FOR POSITIVE EQUAL INCREMENTS .NE.1. C 60 CONTINUE NS=N*INCX DO 70 I=1,NS,INCX SDOT = SDOT + SX(I)*SY(I) 70 CONTINUE RETURN END REAL FUNCTION SNRM2(N,SX,INCX) C***BEGIN PROLOGUE SNRM2 C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SNRM2 INTEGER NEXT REAL SX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, ONE DATA ZERO, ONE /0.0E0, 1.0E0/ C DATA CUTLO, CUTHI / 4.441E-16, 1.304E19 / C***FIRST EXECUTABLE STATEMENT SNRM2 IF(N .GT. 0) GO TO 10 SNRM2 = ZERO GO TO 300 C 10 ASSIGN 30 TO NEXT SUM = ZERO NN = N * INCX C BEGIN MAIN LOOP I = 1 20 GO TO NEXT,(30, 50, 70, 110) 30 IF( ABS(SX(I)) .GT. CUTLO) GO TO 85 ASSIGN 50 TO NEXT XMAX = ZERO C C PHASE 1. SUM IS ZERO C 50 IF( SX(I) .EQ. ZERO) GO TO 200 IF( ABS(SX(I)) .GT. CUTLO) GO TO 85 C C PREPARE FOR PHASE 2. ASSIGN 70 TO NEXT GO TO 105 C C PREPARE FOR PHASE 4. C 100 I = J ASSIGN 110 TO NEXT SUM = (SUM / SX(I)) / SX(I) 105 XMAX = ABS(SX(I)) GO TO 115 C C PHASE 2. SUM IS SMALL. C SCALE TO AVOID DESTRUCTIVE UNDERFLOW. C 70 IF( ABS(SX(I)) .GT. CUTLO ) GO TO 75 C C COMMON CODE FOR PHASES 2 AND 4. C IN PHASE 4 SUM IS LARGE. SCALE TO AVOID OVERFLOW. C 110 IF( ABS(SX(I)) .LE. XMAX ) GO TO 115 SUM = ONE + SUM * (XMAX / SX(I))**2 XMAX = ABS(SX(I)) GO TO 200 C 115 SUM = SUM + (SX(I)/XMAX)**2 GO TO 200 C C C PREPARE FOR PHASE 3. C 75 SUM = (SUM * XMAX) * XMAX C C C FOR REAL OR D.P. SET HITEST = CUTHI/N C FOR COMPLEX SET HITEST = CUTHI/(2*N) C 85 HITEST = CUTHI/FLOAT( N ) C C PHASE 3. SUM IS MID-RANGE. NO SCALING. C DO 95 J =I,NN,INCX IF(ABS(SX(J)) .GE. HITEST) GO TO 100 95 SUM = SUM + SX(J)**2 SNRM2 = SQRT( SUM ) GO TO 300 C 200 CONTINUE I = I + INCX IF ( I .LE. NN ) GO TO 20 C C END OF MAIN LOOP. C C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. C SNRM2 = XMAX * SQRT(SUM) 300 CONTINUE RETURN END SUBROUTINE SSCAL(N,SA,SX,INCX) C***BEGIN PROLOGUE SSCAL C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SSCAL C REAL SA,SX(*) C***FIRST EXECUTABLE STATEMENT SSCAL IF(N.LE.0)RETURN IF(INCX.EQ.1)GOTO 20 C C CODE FOR INCREMENTS NOT EQUAL TO 1. C NS = N*INCX DO 10 I = 1,NS,INCX SX(I) = SA*SX(I) 10 CONTINUE RETURN C C CODE FOR INCREMENTS EQUAL TO 1. C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 5. C 20 M = MOD(N,5) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M SX(I) = SA*SX(I) 30 CONTINUE IF( N .LT. 5 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,5 SX(I) = SA*SX(I) SX(I + 1) = SA*SX(I + 1) SX(I + 2) = SA*SX(I + 2) SX(I + 3) = SA*SX(I + 3) SX(I + 4) = SA*SX(I + 4) 50 CONTINUE RETURN END SUBROUTINE SSWAP(N,SX,INCX,SY,INCY) C***BEGIN PROLOGUE SSWAP C THIS PROLOGUE HAS BEEN REMOVED FOR REASONS OF SPACE C FOR A COMPLETE COPY OF THIS ROUTINE CONTACT THE AUTHORS C From the book "Numerical Methods and Software" C by D. Kahaner, C. Moler, S. Nash C Prentice Hall 1988 C***END PROLOGUE SSWAP C REAL SX(*),SY(*),STEMP1,STEMP2,STEMP3 C***FIRST EXECUTABLE STATEMENT SSWAP IF(N.LE.0)RETURN IF(INCX.EQ.INCY) IF(INCX-1) 5,20,60 5 CONTINUE C C CODE FOR UNEQUAL OR NONPOSITIVE INCREMENTS. C IX = 1 IY = 1 IF(INCX.LT.0)IX = (-N+1)*INCX + 1 IF(INCY.LT.0)IY = (-N+1)*INCY + 1 DO 10 I = 1,N STEMP1 = SX(IX) SX(IX) = SY(IY) SY(IY) = STEMP1 IX = IX + INCX IY = IY + INCY 10 CONTINUE RETURN C C CODE FOR BOTH INCREMENTS EQUAL TO 1 C C C CLEAN-UP LOOP SO REMAINING VECTOR LENGTH IS A MULTIPLE OF 3. C 20 M = MOD(N,3) IF( M .EQ. 0 ) GO TO 40 DO 30 I = 1,M STEMP1 = SX(I) SX(I) = SY(I) SY(I) = STEMP1 30 CONTINUE IF( N .LT. 3 ) RETURN 40 MP1 = M + 1 DO 50 I = MP1,N,3 STEMP1 = SX(I) STEMP2 = SX(I+1) STEMP3 = SX(I+2) SX(I) = SY(I) SX(I+1) = SY(I+1) SX(I+2) = SY(I+2) SY(I) = STEMP1 SY(I+1) = STEMP2 SY(I+2) = STEMP3 50 CONTINUE RETURN 60 CONTINUE C C CODE FOR EQUAL, POSITIVE, NONUNIT INCREMENTS. C NS = N*INCX DO 70 I=1,NS,INCX STEMP1 = SX(I) SX(I) = SY(I) SY(I) = STEMP1 70 CONTINUE RETURN END