The Changing Economics of Knowledge Production
by S. Abis, L. Veldkamp

Discussion by E. McGrattan and J.C. Braxton

EFEG, July 2020
Big Picture on Big Data
Big Picture on Big Data

• Goals: measure data and knowledge production

• Why data?
 ○ An endogenous source of productivity gains
 ○ Likely
 — Innovation policy relevant
 — Fiscal policy relevant
• Measuring data (D_{it}) and knowledge production (f_{it})

$$Y_{it} = f_{it}(\{K_{it}^{j}\}, \{L_{it}^{j}\}, \{M_{it}^{j}\}, D_{it}, \ldots)$$
AV’s Magic Trick

- Measuring data (D_{it}) and knowledge production (f_{it})

$$Y_{it} = f_{it}({K}_{it}^{j}, {L}_{it}^{j}, {M}_{it}^{j}, D_{it}, \ldots)$$
AV’s Magic Trick

- Measuring data (D_{it}) and knowledge production (f_{it})

 $$Y_{it} = f_{it}({K}_{it}^j, {L}_{it}^j, {M}_{it}^j, D_{it}, \ldots)$$

- Without observations on

 - Y_{it} or revenues
AV’s Magic Trick

- Measuring data (D_{it}) and knowledge production (f_{it})

\[Y_{it} = f_{it}(\{K^j_{it}\}, \{L^j_{it}\}, \{M^j_{it}\}, D_{it}, \ldots) \]

- Without observations on
 - Y_{it} or revenues
 - $\{K^j_{it}\}$ or capital rents
AV’s Magic Trick

- Measuring data (D_{it}) and knowledge production (f_{it})

\[
Y_{it} = f_{it}({K^j_{it}}, \{L^j_{it}\}, \{M^j_{it}\}, D_{it}, \ldots)
\]

- Without observations on
 - Y_{it} or revenues
 - K^j_{it} or capital rents
 - M^j_{it} or material costs
AV’s Magic Trick

• Measuring data (D_{it}) and knowledge production (f_{it})

\[Y_{it} = f_{it}(\{K^j_{it}\}, \{L^j_{it}\}, \{M^j_{it}\}, D_{it}, \ldots) \]

• Without observations on

 ○ Y_{it} or revenues
 ○ $\{K^j_{it}\}$ or capital rents
 ○ $\{M^j_{it}\}$ or material costs
 ○ D_{it} or data prices
AV’s Magic Trick

- Measuring data (D_{it}) and knowledge production (f_{it})

\[= f_{it}(\{L^j_{it}\}) \]

- Without observations on
 - Y_{it} or revenues
 - $\{K^j_{it}\}$ or capital rents
 - $\{M^j_{it}\}$ or material costs
 - D_{it} or data prices
JP Morgan

Analysts

Data Manager (DM)
oops.. no desks

JP Morgan

Analysts

Data Manager (DM)
Analysts

- Two technologies in firm i:

$$Y^{OT}_{it} = A^{OT}_{t} D^{\gamma}_{it} (L^{OT}_{it})^{1-\gamma}$$

$$Y^{AI}_{it} = A^{AI}_{t} D^{\alpha}_{it} (L^{AI}_{it})^{1-\alpha}$$

- Data manager’s labor produces D_{it}

- Note: No other inputs or differences in TFPs
Analysts

- Two technologies in firm i:

\[Y_{it}^{OT} = A_{t}^{OT} D_{it}^{\gamma} (L_{it}^{OT})^{1-\gamma} \]

\[Y_{it}^{AI} = A_{t}^{AI} D_{it}^{\alpha} (L_{it}^{AI})^{1-\alpha} \]

- Data manager’s labor produces D_{it}

- Claim: $\alpha > \gamma$ suggests AI is “transformative innovation”
Analysts

- Two technologies in firm i:

\[Y_{it}^{OT} = A_t^{OT} D_{it}^{\gamma} (L_{it}^{OT})^{1-\gamma} \]
\[Y_{it}^{AI} = A_t^{AI} D_{it}^{\alpha} (L_{it}^{AI})^{1-\alpha} \]

- Data manager’s labor produces D_{it}

- Claim: $\alpha > \gamma$ suggests AI is “transformative innovation”

- What do AV do to test this?
What do AV do?

- Use Burning Glass data:
 - Skill descriptions for analysts and data managers
 - Job postings \(\Rightarrow L_{it}^j, j = OT, AI, DM \)
 - Wage across postings \(\Rightarrow w_t^j \) (same for all \(i \!\)!)

- Solve problem of financial firm
 - Allocate analysts and managers to maximize profits
What do AV do?

- Use Burning Glass data:
 - Skill descriptions for analysts and data managers
 - Job postings \(\Rightarrow L_{it}^j, j = OT, AI, DM \)
 - Wage across postings \(\Rightarrow w_t^j \) (same for all \(i \!\)!)

- Solve problem of financial firm
 - Allocate analysts and managers to maximize profits

- How do AV identify \(\alpha, \gamma \)?
Cross-Sectional Information Not Useful

- Implication of theory:
 - $w^j_t = \text{marginal product of labor}_{it}$

 \[
 \frac{D_{it}}{L^k_{it}} = \frac{D_{jt}}{L^k_{jt}}, \quad \text{all } i, j; k = OT, AI
 \]

 ⇒ No variation in cross-section

 ⇒ **Cannot identify** both TFPs and shares

- If variation observed, need new theory
Cross-Sectional Information Not Useful

- Implication of theory:
 - $w^j_t = \text{marginal product of labor}_it$

$$
\frac{D_{it}}{L^k_{it}} = \frac{D_{jt}}{L^k_{jt}}, \quad \text{all } i, j; k = OT, AI
$$

⇒ No variation in cross-section

⇒ Cannot identify both TFPs and shares

- If variation observed, need new theory

- What about time dimension?
Need Variation Over Time

- Implication of theory:
 - Shadow price of data = marginal product of data
 - Manipulate this condition to get:
 \[
 \Delta g(D_{it}, D_{it+1}) = \frac{\alpha}{1 - \alpha} \Delta w_t^{AI} L_{it}^{AI} + \frac{\gamma}{1 - \gamma} \Delta w_t^{OT} L_{it}^{OT}
 \]

- Suppose \(D \propto \) wages for data managers
 \[\Rightarrow\] Differential AI, OT earnings growth identifies \(\alpha, \gamma \)
Idea Behind Identification

\[\Rightarrow \alpha > \gamma \]
There are at least two problems here..
Back to XKCD

JP Morgan

Analysts

Data Manager (DM)
Significant Overlap of Skills

JP Morgan

Analysts

Data Manager (DM)

1001
10111
000111
11100

+AI
Most Analysts are Neither OT nor AI

JP Morgan

Analysts

Data Manager (DM)
• Using AV’s criteria for 2017, we found
 ○ 110+ SOC codes for OT, AI, DM
 ○ 92% of analysts are neither OT nor AI

⇒ Not obvious that distinct technologies being used
Using AV’s criteria for 2017, we found

- 110+ SOC codes for OT, AI, DM
- 92% of analysts are neither OT nor AI

⇒ Not obvious that distinct technologies being used

- What can we learn from BLS aggregates?
BLS Aggregates with AV Sample Weights

- Compute BLS earnings growth with AV
 - Industries
 - Occupation weights from Burning Glass
- With and without:
 - SOC 15-1199, Computer Occupations, All Other
Punchline: $\alpha > \gamma$ possible
Punchline: Results sensitive to groupings
Punchline: AI group includes DM types
Back to Big Picture

- Good data measurement important for policy

- Need:
 - Broader scope (beyond financial services)
 - More information on production
 - Surveys like the NSF for R&D