

BUSINESS INCOME UNDERREPORTING AND PUBLIC FINANCE

A. Bhandari, E. McGrattan, Y. Yao

February 2024

- Net government saving ≈ -1 \$Trillion (in 2018)
 - $\circ\,$ Current receipts: 5.6T
 - $\circ\,$ Current expenditures: 6.7 T

- Net government saving ≈ -1 \$Trillion
 - $\circ\,$ Current receipts: 5.6T
 - $\circ\,$ Current expenditures: 6.7T
- Untaxed business income \approx 1 \$Trillion
 - $\circ\,$ Income reported to IRS: 3.2T
 - $\circ\,$ Estimate of true: 4.2T

- Net government saving ≈ -1 \$Trillion
 - $\circ\,$ Current receipts: 5.6T
 - $\circ\,$ Current expenditures: 6.7T
- Untaxed pass-through income ≈ 700 \$Billion
 - $\circ\,$ Income reported to IRS: 1.3T
 - $\circ~$ Estimate of true: 2T

- Net government saving $\approx -5.4\%$ GDP
 - Current receipts: 27%
 - \circ Current expenditures: 33%
- Untaxed pass-through income $\approx 3.4\%$ GDP
 - $\circ\,$ Income reported to IRS: 6.4%
 - $\circ~$ Estimate of true: 9.8%

- Net government saving $\approx -5.4\%$ GDP
 - Current receipts: 27%
 - \circ Current expenditures: 33%
- Untaxed pass-through income $\approx 3.4\%$ GDP
 - $\circ\,$ Income reported to IRS: 6.4%
 - $\circ~$ Estimate of true: 9.8%

 \Rightarrow Prompting more funding for IRS enforcement

- Inflation Reduction Act:
 - $\circ~80$ billion over 10 years
 - Enforcement budget roughly doubled
- Predicted returns on investment (ROI):
 - CBO/JCT (2021): 5–9\$
 - \circ Boning et al (2023): 5–12\$

- First step before using IRS micro data
 - Use public IRS compliance data (TCMP/NRP)
 - $\circ\,$ Develop dynamic GE model of tax evasion
 - Compare higher tax vs enforcement counterfactuals
- Useful for next steps
 - Data: expand collection to business filings
 - $\circ~$ Theory: add transition dynamics and welfare analysis

- Factors relevant for *dynamics of tax evasion*
 - \circ Loss of *sweat capital* (eg, reputation, brands, etc)
 - $\circ\,$ Recovery of back taxes
- Why relevant?
 - Impacts business dynamics and productivity
 - Amplifies precautionary motives
 - \Rightarrow Economies with higher tax vs enforcement different

IRS Compliance Data

- Tax gap = random audits + DCE adjustments
- Random audits:
 - Taxpayer compliance measurement program, 1962–88
 - National research program, 2000–present
- Detection controlled estimation (DCE) adjustments:
 - Scale up recommendations of all examiners
 - $\circ~$ Use data from examiners with largest adjustments

Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9

What is the Main Source of the Gap?

Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9

What is the Main Source of the Gap?

Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9
Source share:			
Underreporting	83	80	80
Underpayment	10	12	10
Nonfiling	7	8	11

What is the Main Source of Underreporting?

Source share	2001	2011	2021
Business	62	55	55
Wages & salaries	4	3	2
Other	34	42	43

- Evidence from NRP random-audit studies (no DCE)
 - $\circ\,$ All owners—ranked by reported incomes
 - Sole proprietors—ranked by understated tax
- Reveal same patterns
 - $\circ~$ Cheating is widespread
 - $\circ\,$ Few owners account for most cheating

Owners Ranked by Reported Incomes

Owners Ranked by Reported Incomes

Owners Ranked by Reported Incomes

Distribution of U-to-R Ratios

Proprietors Ranked by Understated Taxes

Proprietors Ranked by Understated Taxes

Cumulated Understated Taxes

Nonpecuniary Motives for Compliance

- TAS surveys intended to elicit nonpecuniary motives
- How?
 - Construct samples of sole proprietors
 - Use DIF scores indicating likelihood of audit
 - Group proprietors by DIF score
 - $\circ~$ Compare responses of low-DIF and high-DIF groups

- Compare lowest and highest compliance groups
- Where similar:
 - $\circ\,$ Agree tax rules complicated
 - Know consequences of underreporting
 - Profess moral obligation to pay taxes
- Where different:
 - High-compliance more trusting in IRS/govt
 - High-compliance rely more on preparers

Does Evasion Occur Across Income Distribution?

- Evidence from NRP random-audit studies (no DCE)
 - Available publicly only for total incomes
 - Shows underreporting across the distribution
- Estimates of very top depend on DCE adjustments

Shares of Unreported Total Incomes (no DCE)

- Gross tax gap large and $\approx 3\%$ of GDP over time
- Underreporting is main source of tax gap
- Underreporting by business owners is most of that
- Underreporting is widespread but concentrated
- Underreporting occurs across the income distribution
- Economic deterrence is only one factor driving compliance

Theory

- Occupational choice: paid- or self-employment
- Taxpayer types: always compliant or not
- Noncompliance source: business income underreporting
- Dynamics of tax evasion:
 - Loss of reputation, business brands, customers
 - $\circ\,$ Recovery of back taxes

 \Rightarrow Extends standard model of economic deterrence

• Choose business b or work w

 $V(s) = \max \{V^b(s), V^w(s)\}$

 $V^{i}(s) = \max_{x} \left\{ U(c,\ell) + \beta \sum_{z',\epsilon'} \pi(z',\epsilon'|z,\epsilon) \mathcal{V}(s') \right\}$

where $s = (a, \kappa, d, z, \epsilon)$ and

 \circ a: financial assets

- $\circ~\kappa:$ sweat capital, eg, reputation, brands, etc
- \circ d: back taxes, eg, accumulated unpaid taxes
- \circ z: productivity in self-employment
- $\circ~\epsilon$: productivity in paid-employment

• $x = [a', \kappa', d', c_p, c_c, \ell, k_p, h_p, h_\kappa, e, c^r, y_b^r]$

 $\mathcal{V}(a',\kappa',d',z',\epsilon')$ $=\underbrace{(1-\Pi(d'))V(a',\kappa',d',z',\epsilon')}_{}$ no audit $+\underbrace{\Pi(d')V(a'-f_a(d'),f_r(\kappa'),0,z',\epsilon')}_{\bullet}$

audit

$$\begin{split} \mathcal{V}(a',\kappa',d',z',\epsilon') &= \underbrace{(1-\Pi(d'))V(a',\kappa',d',z',\epsilon')}_{\text{no audit}} \\ &+ \underbrace{\Pi(d')V(a'-f_a(d'),f_r(\kappa'),0,z',\epsilon')}_{\text{audit}} \\ &+ \underbrace{\Pi(d')V(a'-f_a(d'),f_r(\kappa'),0,z',\epsilon')}_{\text{audit}} \end{split}$$

- Goods and services: $y_p = z f_p(\kappa, k_p, h_p)$
 - $\circ z =$ productivity in self-employment

 $\circ \kappa = \text{sweat capital}$

 $\circ k_p = \text{rented physical capital}$

 $\circ h_p =$ owner time in production

• Sweat investment: $x_{\kappa} = f_{\kappa}(h_{\kappa}, e)$

• h_{κ} = owner time in brand building

 $\circ e = \text{owner expenses}$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Borrowing

$$a' \ge f_a(d')$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\uparrow \qquad \nearrow$$

next period and current assets

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\swarrow \swarrow \checkmark$$
true and reported income
$$y_b = py_p - (r+\delta)k_p - e, \ y_b^r = y_b - (1+\tau_c)c^r$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\uparrow \qquad \nearrow$$

taxes on business and consumption

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\uparrow \nearrow$$
goods produced by C-corps
and pass-thrus, $c = ces(c_c, c_p)$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\uparrow$$
transfers

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

$$\uparrow$$
sweat investment (shown earlier)

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

$$\uparrow$$
current misreporting: $y_b - y_b^r = (1 + \tau_c)c^r$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = \left[(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e) \right] / (1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Borrowing

$$a' \ge f_a(d')$$

- Standard dynamic program for workers, except
 - $\circ\,$ Sweat capital decays without use
 - Back taxes not forgiven
- Standard dynamic program for C corporations
- Public financing (G&S plus transfers) with
 - $\circ~$ Taxes on consumption and all forms of income
 - Fines if caught evading taxes

(Details in slide deck appendix)

Qualitative Predictions

Predictions of Increased Enforcement

- Lower precautionary motives
 - Financial assets used to pay future fines
 - Borrowing constraints less binding
- Lower sweat capital stocks
 - $\circ\,$ Brand assets lost with exposed tax evasion
 - Business ages lower with more exit/entry
 - Business productivity higher due to selection

Quantitative Results

• Audit probability, $\Pi(d') = \pi$, π varied

• Fines,
$$f_a(d) = \bar{p}d, \ \bar{p} = 4$$

- Reputational cost, $f_r(\kappa) = 0$ if non-compliant
- Underreporting, $f_d(c^r) = \tau_b(1+\tau_c)c^r$, $\tau_c = .065$, $\tau_b = .4$
- Back taxes depreciation, $\delta_d = 20\%$

Note: See paper for full calibration

- Vary audit probability π
- Record impacts for owners by type

	% Change from $\pi = 1\%$ to				
Owner type:	2%	3%	5%	7%	
Non-compliant	-21	-35	-60	-70	
Compliant	11	23	43	45	
All owners	-6	-9	-12	-17	

 \Rightarrow Large compositional shift

	γ_0 Change from $\pi = 1\gamma_0$ to				
Owner type:	2%	3%	5%	7%	
Non-compliant	-4	-9	-29	-57	
Compliant	5	12	28	39	
All owners	-10	-18	-30	-36	

% Change from $\pi = 1\%$ to

 \Rightarrow Large drop in precautionary saving

% Change from $\pi = 1\%$ to

Owner type:	2%	3%	5%	7%
Non-compliant	9	16	25	27
Compliant	0	0	-1	-2
All owners	6	9	10	11

 \Rightarrow Large increase in productivity due to selection

	% Change from $\pi = 1\%$ to				
Owner type:	2%	3%	5%	7%	
Non-compliant	-9	-14	-37	-31	
Compliant	12	13	21	21	
All owners	-4	-9	-15	-12	

 \Rightarrow Large drop in business assets with more audits

% Change from $\pi = 1\%$ to

Owner type:	2%	3%	5%	7%
Non-compliant	-33	-50	-64	-68
Compliant	5	8	15	18
All owners	-30	-42	-49	-49

 \Rightarrow Large drop in age with more audits, less capital

Business Age Distributions ($\pi = 1\%$ and 7%)

- Two rankings of interest:
 - By misreporting rates: $100(y_b y_b^r)/y_b$
 - $\circ\,$ By business receipts: py_p
- Looking for patterns of underreporting
 - $\circ\,$ Few owners account for most cheating
 - $\circ~$ Cheating occurs across the income distribution

% of Income Underreported

% Deviations	None	<80	80-90	90-99	>99
Business age	-37	-18	19	4	67
Financial assets	5 - 40	-63	-30	-4	79
Sweat capital	-21	63	59	51	23
Productivity	7	11	14	13	-16
True income	-10	111	107	93	-7
% Owners	59	2	2	4	33

 \Rightarrow Concentrated, but too many able to get income to 0

Quintiles of Receipts

% Deviations	(1)	(2)	(3)	(4)	(5)
Business age	-21	6	-21	14	21
Financial assets	19	12	-1	-6	-23
Sweat capital	-57	-13	-15	36	49
Productivity	-21	-17	10	14	14
True income	-113	-68	5	72	104
% Underreporting	32	47	26	36	57

 $\Rightarrow\,$ Cheating occurs throughout the size distribution

- Two ways to raise same revenues
 - Higher enforcement: $\pi = 2\% \rightarrow \pi = 5\%$
 - Higher tax rate on business: $\tau_b = 40\% \rightarrow \tau_b = 47\%$
- Raise revenues by 3% relative to $\pi = 2, \tau_b = 40$ baseline

% Change in:	More Audits $\pi=5 \text{ vs } 2\%$	Higher Tax $\tau_b = 47 \text{ vs } 40\%$
# of Owners	-7	-4
Non-compliant	-50	12
Compliant	29	-18
Business age	-28	16
Financial assets, a	-22	14
Sweat capital, κ	-11	6
Back taxes, d	-66	44
Productivity, z	6	-3
Business income, y_b	4	4

- Higher enforcement vs taxation
 - Most evident in composition of businesses/owners
 - Not evident in aggregate business income
- Need transitional dynamics to do proper welfare analysis

- Data: gather relevant IRS micro data
 - $\circ~$ Current NRP studies only work with 1040
 - $\circ\,$ Want to expand analysis to business filings
- Theory: add transitional dynamics
 - Current analysis is steady state
 - Want to analyze Inflation Reduction provisions
 - Want to do full welfare analysis with transition

Appendix

• Workers choose
$$x = [a', c_p, c_c, \ell]$$
 to solve

$$V^{w}(s) = \max_{x} \left\{ U(c,\ell) + \beta \sum_{z',\epsilon'} \pi(z',\epsilon'|z,\epsilon) \mathcal{V}(s') \right\}$$

subject to

$$a' = [(1+r)a + w\epsilon h_w - T^w (w\epsilon h_w) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$
$$\kappa' = (1-\lambda_\kappa)\kappa/(1+\gamma)$$
$$d' = (1-\lambda_d)d/(1+\gamma)$$
$$1 = \ell + h_w$$

• Corporations choose x_c, n_c to solve

$$V^{c}(k_{c}) = \max\left\{ (1 - \tau_{d})d_{c} + \frac{1 + \gamma}{1 + r}V^{c}(k_{c}') \right\}$$

subject to

$$d_c = AF(k_c, n_c) - wn_c - x_c - \tau_p(y_c - wn_c - \delta_k k_c)$$
$$x_c = (1 + \gamma)k'_c - (1 - \delta_k)k_c$$

$$g + \chi + (r - \gamma)b = \tau_c \int (c_{ci} + pc_{pi}) di +$$

+ $\tau_d (y_c - wn_c - (\gamma + \delta_k)k_c - \tau_p (y_c - wn_c - \delta_k k_c))$
+ $\tau_p (y_c - wn_c - \delta_k k_c) + \int T^n (w\epsilon_i n_i) di$
+ $\int T^b (y_{ri}^b) di + \int \mathbf{1}_i f_a(d_i) di$