Motivation

- Privately-owned firms
 - Account for 1/2 of US business net income
 - Relevant for growth, wealth, tax policy/compliance

- But pose challenge for theory and measurement
Meeting the Challenge

- Propose theory of firm dynamics and capital reallocation
 - Add transfers to model of firm dynamics
 - Add self-created intangibles as productive capital
- Use administrative IRS data to discipline theory
Today: 3 Main Take-aways

- IRS data make study of business transfers possible
- New theory is needed to analyze these data
- Theory provides insights for tax policy/administration
IRS DATA MAKE STUDY OF BUSINESS TRANSFERS POSSIBLE
Business Transfers are Taxable Events

- Seller and buyer both report sale
 - Seller has to pay capital gains
 - Buyer has to report depreciable assets

- Price allocated across asset types
 - Seller wants to allocate to long-term
 - Buyer wants to allocate to short-term

⇒ Conflicts of interest and thus consistent reporting
What Do Filings Reveal?

- Transferred assets are primarily intangible
 - Customer bases and client lists
 - Non-compete covenants
 - Licenses and permits
 - Franchises, trademarks, tradenames
 - Workforce in place
 - IT and other know-how in place
 - Goodwill and on-going concern value
 - Consulting contracts during transition

- Transferred assets are sold as a group
What Else Do We Use?

- From other tax filings before/after sale
 - Characteristics and business filings for buyers/sellers
 - Characteristics and individual filings for all owners

- From brokered sales
 - Time between listing and sale
New theory is needed to analyze these data
New Theory

- Model of firm dynamics with self-created intangibles
 - Indivisible and nonrentable capital
 - Bilaterally-traded assets making up business
 - Requiring time to find buyers/negotiate allocations

⇒ Adds intangible investment and transfers to Hopenhayn
Environment: A Helicopter View

- Infinite horizon with continuous time

- Business type indexed by $s = (z, \kappa)$
 - z: non-transferable capital/owner productivity
 - κ: transferable and accumulable capital

- Key decisions for owners
 - Production
 - Investment
 - Transfers
Production

- Technology:

\[y(s) = \max_n y(s, n) \]
\[\equiv \max_n \hat{z}(s) \kappa(s) \alpha n^\gamma - wn \]
\[\equiv z(s) \kappa(s) \alpha \]

where

\(\hat{z} \): non-transferable capital/owner productivity
\(\kappa \): transferable and accumulable capital
\(n \): all external rented factors

- Idea: \(\hat{z} \) is owner-specific, \(\kappa \) is self-created intangibles
Firm Dynamics, $s \rightarrow s'$

- Entry $\rightarrow (z, \kappa)$
- Shocks to productivity $z \rightarrow z'$
- Investment $\kappa \rightarrow \kappa'$
- Capital transfer $\kappa \rightarrow \kappa'$
- Exit $(z, \kappa) \rightarrow$
Firm Dynamics: Some notation

• Entry and exit:

\[G(s) = \text{initial distribution of type} \]
\[c_e = \text{entry cost} \]
\[\delta = \text{exit rate} \]

• Shocks to productivity:

\[dz = \mu(z)dt + \sigma(z)d\mathcal{B} \]
Firm Dynamics: Some notation

- Entry and exit:

 \[G(s) = \text{initial distribution of type} \]

 \[c_e = \text{entry cost} \]

 \[\delta = \text{exit rate} \]

- Shocks to productivity:

 \[dz = \mu(z)dt + \sigma(z)d\mathcal{B} \]

Note: just standard Hopenhayn so far
Firm Dynamics: Some notation

- Entry and exit:

 \[G(s) = \text{initial distribution of type} \]
 \[c_e = \text{entry cost} \]
 \[\delta = \text{exit rate} \]

- Shocks to productivity:

 \[dz = \mu(z)dt + \sigma(z)d\mathcal{B} \]

Next: add self-created intangibles and transfers
Firm Dynamics: Build or Buy Capital?

- Given decreasing returns to scale

⇒ Owners build to optimal size through
 - Internal investment or
 - Business transfers
Firm Dynamics: Build or Buy Capital?

- Investment: $d\kappa = \theta - \delta \kappa$ with convex cost $C(\theta)$

- Transfers between s, \tilde{s}:

 - Bilateral meeting rate: η

 † Allocation: $\kappa^m(s, \tilde{s}) \in \{\kappa(s) + \kappa(\tilde{s}), 0\}$

 - Price: $p^m(s, \tilde{s})$

† More general specifications also explored
Adding it up: Owner’s Value

\[(r + \delta)V(s) = \max_n y(s, n) + \mu(z)\partial_z V(s) + \frac{1}{2}\sigma^2(z)\partial_{zz} V(s)\]

\[\text{production} \hspace{5cm} \text{shocks to productivity}\]

\[+ \max_{\theta} \partial_{\kappa} V(s)(\theta - \delta_k) - C(\theta) + \max_{\lambda} \eta W(s; \lambda)\]

\[\text{investment} \hspace{5cm} \text{transfer}\]

where expected gain from transfer is:

\[W(s; \lambda) = \sum_{\tilde{s}} \left\{ V([z, \kappa^m(s, \tilde{s})]) - V(s) - p^m(s, \tilde{s}) \right\} \lambda(s, \tilde{s})\]

Partner Distribution
Closing the Model

- Free entry condition

\[
\int V(s) dG(s) \leq c_e
\]

where measure of entrants is \(\phi_e(s) = mG(s) > 0 \)

- Evolution of types:

\[
\dot{\phi} = \Gamma(\theta, \lambda; \phi) + \phi_e
\]

induced by drivers of firm dynamics
Recursive Equilibrium

Objects: \(\{ V, \kappa^m, p^m, \theta, \lambda, \phi, \phi_e, w \} \)

\begin{align*}
\text{value function} & \quad \text{policy functions} & \quad \text{measures} & \quad \text{wage} \\
\end{align*}

that satisfy

1. business owners’ optimality
2. market clearing
3. consistency of measures

- Can solve dynamic program iteratively

 \(\circ \) Update: \((\phi, V) \rightarrow \text{static planner} \rightarrow (\phi, V)\)
Properties of Equilibrium

- Competitive allocations maximize
 \[
 \int e^{-rt} \sum_s [y(s) - C(\theta(s, t)) - m(t)c_e] \phi(s, t) dt
 \]
 \[\Rightarrow \text{achieves efficiency}\]

- Competitive prices independent of \(z \)
 \[p^m(s, \tilde{s}) = \mathcal{P}(\kappa(\tilde{s}))\]
 \[\Rightarrow \text{same good sold at same price}\]

- Bilateral trades are pairwise stable
 \[\not\exists \text{feasible trade for }(s, \tilde{s}) \text{ making pair strictly better off}\]
Model Predictions

- Who trades with whom?
- What are the terms of trade?
- What is the implied dispersion in MPKs?
- How do financing constraints affect predictions?
Model Predictions

• Who trades with whom?
• What are the terms of trade?
• What is the implied dispersion in MPKs?
• How do financing constraints affect predictions?

Let’s simulate the model and find out...
Model Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns to scale</td>
<td>$\alpha = 0.5$</td>
</tr>
<tr>
<td>Discount rate</td>
<td>$r = 0.06$</td>
</tr>
<tr>
<td>Investment cost†</td>
<td>$A = 20, \rho = 2.0$</td>
</tr>
<tr>
<td>Productivity</td>
<td>$\mu = 0, \sigma = 0.25$</td>
</tr>
<tr>
<td>Entrant distribution</td>
<td>mass at $z = z_0, \kappa = 1$</td>
</tr>
<tr>
<td>Death rate</td>
<td>$\delta = 0.10$</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>$\delta_\kappa = 0.058$</td>
</tr>
<tr>
<td>Bilateral meeting rate</td>
<td>$\eta = 0.40$</td>
</tr>
</tbody>
</table>

\dagger $C'(\theta) = A\theta^\rho$
How are Key Parameters Identified?

• Key parameters
 ○ Meeting rate η
 ○ Investment costs $C'(\theta) = A\theta^\rho$
 ○ Returns to scale in $y = z\kappa^\alpha$

• Key moments from IRS (8594 and annual filings)
 ○ Frequency of business transfers
 ○ Growth in business net income
 ○ Quantile regressions of y on P
- Size of square proportional to number of transactions
- Shows capital trading upward in MPK sense
- Suggests that unit prices would be higher at low κ
What are the Terms of Trade?

![Graph of Per-unit Price vs. Quantity of Capital (κ)](image)

Per-unit Price ($\varphi(\kappa) / \kappa$)

Quantity of Capital (κ)
What is the Implied Dispersion in MPKs?

- Compare to “misallocation” literature benchmark
 - Divisible versus indivisible capital
 - Rental versus no rental markets

- Compute first-best:

\[
\kappa^{FB}(s) \in \arg\max \int z(s)[\kappa^{FB}(s)]^{\alpha} \phi(s) ds \\
\int \phi(s) \kappa^{FB}(s) ds = \int \phi(s) \kappa(s) ds
\]
Dispersion in MPKs
Predictions with Financing Constraints

- Add constraint: $p^m \leq \text{year's income}$

- Main effects:
 - No sales with small buyers
 - Large drop in price for big-κ sales
Predictions with Financing Constraints

Per-unit Price ($\varphi(\kappa)/\kappa$)

Quantity of Capital (κ)

- Red: No price cap
- Blue: With price cap
Theory provides insights for tax policy/administration
Taxing Self-Created Intangible Capital

• Most value in business is κ

• How is it taxed?
 • Income taxes on business owner
 • Capital gains taxes on realized gains
 • Biden proposal: taxes on unrealized gains

• What is the implied tax incidence?
Taxing Capital Gains

- Relevant input to analysis is business wealth

- Three different concepts:
 - Price if sold business today
 - Present value of owner dividends
 - Capitalized income

⇒ All have model counterparts
Taxing Capital Gains

- Relevant input to analysis is business wealth

- Three different concepts:
 - Price if sold business today, \(P(\kappa(s)) \)
 - Present value of owner dividends, \(V(s) \)
 - Capitalized income, \(\hat{V}(s) = \frac{y(s)}{\text{constant } R} \)

\[\Rightarrow \text{All have model counterparts} \]
Estimating Business Wealth

<table>
<thead>
<tr>
<th>Distribution Percentile</th>
<th>Transferable Share $\mathcal{P}(\kappa(s))/V(s)$</th>
<th>Income Yield $[y(s) - C(\theta(s))]/V(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.00</td>
<td>-0.16</td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>50</td>
<td>0.37</td>
<td>0.09</td>
</tr>
<tr>
<td>75</td>
<td>0.50</td>
<td>0.12</td>
</tr>
<tr>
<td>95</td>
<td>0.68</td>
<td>0.13</td>
</tr>
<tr>
<td>99</td>
<td>0.82</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Estimating Business Wealth

<table>
<thead>
<tr>
<th>Distribution Percentile</th>
<th>Transferable Share $P(\kappa(s))/V(s)$</th>
<th>Income Yield $[y(s) - C(\theta(s))]/V(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.00</td>
<td>-0.16</td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>50</td>
<td>0.37</td>
<td>0.09</td>
</tr>
<tr>
<td>75</td>
<td>0.50</td>
<td>0.12</td>
</tr>
<tr>
<td>95</td>
<td>0.68</td>
<td>0.13</td>
</tr>
<tr>
<td>99</td>
<td>0.82</td>
<td>0.15</td>
</tr>
</tbody>
</table>

- Two insights:
 - P/V large: relevant for tax elasticities
 - $(y - C)/V$ dispersed: relevant for capitalizing income
Incidence When Taxing Realized Gains

- Introduce tax τ on realized gains
 - Seller receives $(1 - \tau)p^m(s, \tilde{s})$
 - Government receives $\tau p^m(s, \tilde{s})$

- Positive tax base due to κ (not in Hopenhayn)
Effects of Tax

- Fewer trades (obvious)
 - Tax eliminates trades where gains are small

- Lower investment and entry (obvious)
 - Tax introduces lock-in effect

- Heterogeneity in tax incidence
 - Nonmonotonic in size of business sold
 - Larger on seller for small and large quantities
Heterogeneity in Tax Incidence

![Graph showing the effect of pre-tax and post-tax scenarios on the per-unit price (\(\frac{\varphi(\kappa)}{\kappa}\)) with respect to the quantity of capital (\(\kappa\)). The graph illustrates that the per-unit price decreases as the quantity of capital increases, with different slopes and levels for pre-tax and post-tax scenarios.](image-url)
Heterogeneity in Tax Incidence

The graph illustrates the per-unit price ($\varphi(\kappa)/\kappa$) vs. the quantity of capital (κ). Three lines represent different tax scenarios:

- **Green line:** Pre-tax case.
- **Red line:** No-tax case.
- **Blue line:** Post-tax case.

Key points:

- **Almost full incidence on seller:** The green line shows a significant drop, indicating a large portion of the tax burden is shifted to the seller.
- **Partial incidence on buyer:** The red line shows a moderate drop, indicating a partial shift to the buyer.

The x-axis represents the quantity of capital (κ), while the y-axis shows the per-unit price ($\varphi(\kappa)/\kappa$).
Recap

- IRS data make study of business transfers possible
- New theory is needed to analyze these data
- Theory provides insights for tax policy/administration