

A THEORY OF BUSINESS TRANSFERS

Minnesota

Wisconsin

Anmol Bhandari Paolo Martellini Ellen McGrattan MINNESOTA

Motivation

- Privately-owned firms
 - Account for 1/2 of US business net income
 - Relevant for growth, wealth, tax policy/compliance
- But pose challenge for theory and measurement

This Paper

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

This Paper

- Proposes theory of firm dynamics and capital reallocation
- Characterizes properties of competitive equilibrium
- † Uses administrative IRS data to discipline theory
- Studies transfers, wealth, and impact of capital gains tax

† Still in progress

- Transferred assets are primarily intangible
 - \Rightarrow evidence in IRS Forms 8594, 8883 data shows intangible share is $\approx 60\%$

Form 8594 (Rev. November 2021) Department of the Treasury Internal Revenue Service	t of the Treasury			OMB No. 1545-0074 Attachment Sequence No. 169	_	
Name as show	n on return		Identifying number as shown	on return		
Check the bo	x that identifies you:					
	al Information				_	
1 Name of other party to the transaction			Other party's identifying number			
Address (num	nber, street, and room or suite no.)					
City or town,	state, and ZIP code					
2 Date of sale 3 Total sales price (consideration)						
Dort II Origina	Chatamant of Assats Transferred					
Part II Origina 4 Assets	al Statement of Assets Transferred Aggregate fair market value (actual amount for Class I)		Allocation of sales p	rice	_	
Class I	\$	\$				
Class I	φ	Ψ			人	
Class II	\$	\$				Cook /goourities
Class III	\$	\$				Cash/securities
Class IV	\$	\$			\leftarrow	Inventories
Class V	\$	\$			\leftarrow	Fixed assets
Class VI and VII	\$	\$			\leftarrow	Sec. 197 intangibles
Total	\$	\$				9
5 Did the purch	naser and seller provide for an allocation of the sales pri	ice in the			_	
written docun	nent signed by both parties?			Yes No		
	he aggregate fair market values (FMV) listed for each of a agreed upon in your sales contract or in a separate writte				_	
not to compe	se of the group of assets (or stock), did the purchaser a ste, or enter into a lease agreement, employment contr with the seller (or managers, directors, owners, or emplo	act, mana	agement contract, or simila			
	th a statement that specifies (a) the type of agreement ar					

- Transferred assets are primarily intangible
 - Customer bases and client lists
 - Non-compete covenants
 - Licenses and permits
 - Franchises, trademarks, tradenames
 - Workforce in place
 - IT and other know-how in place
 - o Goodwill and on-going concern value

 \Rightarrow Classified as Section 197 intangibles by IRS

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - o Sold as a group that makes up a business

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - ⇒ evidence in seller's business tax filings shows little activity after sale

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
 - \Rightarrow evidence in brokered sale data is ≈ 290 days

- Transferred assets are primarily
 - Intangible and neither rentable nor pledgeable
 - Sold as a group that makes up a business
 - Exchanged after timely search and brokered deals
- ⇒ Existing models unsuitable for studying business transfers

Today's Talk

• Study firm dynamics

• Characterize competitive equilibrium

• Estimate wealth and impact of capital gains tax

Today's Talk

- Study firm dynamics with
 - Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium

• Estimate wealth and impact of capital gains tax

Today's Talk

- Study firm dynamics with
 - Indivisible capital
 - Bilaterally traded
 - Requiring time to reallocate
- Characterize competitive equilibrium
 - Who trades with whom?
 - How are terms of trade determined?
 - What are the properties?
- Estimate wealth and impact of capital gains tax

THEORY

Environment: A Helicopter View

- Infinite horizon with continuous time
- Business type indexed by $s = (z, \kappa)$
 - \circ z: non-transferable capital/owner productivity
 - $\circ \kappa$: transferable and accumulable capital
- Business value V(s) depends on
 - \circ Production, y(s)
 - \circ Firm dynamics $(s \to s')$

Production

• Technology:

$$y(s,n) = \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} - wn$$
$$\equiv z(s)\kappa(s)^{\alpha}$$

where

 \hat{z} : non-transferable capital/owner productivity

 κ : transferable and accumulable capital

n: all external rented factors

• Idea: \hat{z} is owner-specific, κ is self-created intangibles

Production

• Technology:

$$y(s,n) = \max_{n} \hat{z}(s)\kappa(s)^{\hat{\alpha}}n^{\gamma} - wn$$
$$\equiv z(s)\kappa(s)^{\alpha}$$

where

 \hat{z} : non-transferable capital/owner productivity

 κ : transferable and accumulable capital

n: all external rented factors

• Idea: \hat{z} is owner-specific, κ is self-created intangibles

Firm Dynamics, $s \rightarrow s'$

- Entry $\rightarrow (z, \kappa)$
- Shocks to productivity $z \to z'$
- Investment $\kappa \to \kappa'$
- Capital transfer $\kappa \to \kappa'$
- Exit $(z, \kappa) \rightarrow$

Firm Dynamics: Some notation

• Entry and exit:

$$G(s) = \text{initial distribution of type}$$
 $c_e = \text{entry cost}$
 $\delta = \text{exit rate}$

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Firm Dynamics: Some notation

• Entry and exit:

$$G(s)$$
 = initial distribution of type
 c_e = entry cost
 δ = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Note: just standard Hopenhayn so far

Firm Dynamics: Some notation

• Entry and exit:

$$G(s)$$
 = initial distribution of type
 c_e = entry cost
 δ = exit rate

• Shocks to productivity:

$$dz = \mu(z)dt + \sigma(z)d\mathcal{B}$$

Next: add self-created intangibles and transfers

Firm Dynamics: Build or Buy Capital?

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Trades between s, \tilde{s} :
 - \circ Bilateral meeting rate: η
 - \circ Allocation: $\kappa^m(s,\tilde{s}) \in {\kappa(s) + \kappa(\tilde{s}), 0}$
 - \circ Price: $p^m(s, \tilde{s})$
 - Distribution of partners: $\sum_{\tilde{s}} \lambda(s, \tilde{s}) + \lambda(s, 0) = 1$
 - Expected gain:

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z,\kappa^m(s,\tilde{s})]) - V(s) - p^m(s,\tilde{s}) \right\} \lambda(s,\tilde{s})$$

Firm Dynamics: Build or Buy Capital?

- Investment: $d\kappa = \theta \delta_{\kappa}$ with convex cost $C(\theta)$
- Trades between s, \tilde{s} :
 - \circ Bilateral meeting rate: η
 - † Allocation: $\kappa^m(s,\tilde{s}) \in {\kappa(s) + \kappa(\tilde{s}), 0}$
 - \circ Price: $p^m(s, \tilde{s})$
 - Distribution of partners: $\sum_{\tilde{s}} \lambda(s, \tilde{s}) + \lambda(s, 0) = 1$
 - Expected gain:

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z,\kappa^m(s,\tilde{s})]) - V(s) - p^m(s,\tilde{s}) \right\} \lambda(s,\tilde{s})$$

† More general specifications also explored

Adding it up: Owner's Value

$$(r+\delta)V(s) = \underbrace{\max_{n} \ y(s,n) - wn}_{\text{production}} + \underbrace{\mu(z)\partial_{z}V(s) + \frac{1}{2}\sigma^{2}(z)\partial_{zz}V(s)}_{\text{shocks to productivity}}$$

$$+ \underbrace{\max_{\theta} \ \partial_{\kappa} V(s)(\theta - \delta_{k}) - C(\theta)}_{\text{investment}} + \underbrace{\max_{\lambda} \eta W(s; \lambda)}_{\text{trade}}$$

Closing the Model

• Free entry condition

$$\int V(s)dG(s) \leq c_e$$

where measure of entrants is $\phi_e(s) = mG(s) > 0$

• Evolution of types:

$$\dot{\phi} = \Gamma(\theta, \lambda; \phi) + \phi_e$$

induced by drivers of firm dynamics

Recursive Equilibrium

Objects:
$$\{\underbrace{V,}_{\text{value function}}\underbrace{\kappa^m, p^m, \theta, \lambda,}_{\text{policy functions}}\underbrace{\phi, \phi_e,}_{\text{measures wage}}\underbrace{w}\}$$

that satisfy

- 1. business owners' optimality
- 2. market clearing
- 3. consistency of measures

Discussion of Trading Protocol

- Relative to models with
 - CES demand/ monopolistic competition
 - Frictional labor or asset markets
- Framework delivers (with few a priori restrictions)
 - Differentiated goods
 - Rich heterogeneity in market participants
 - Endogenously evolving matching sets

CHARACTERIZING EQUILIBRIA

Who Trades with Whom?

- Intuitive example:
 - \circ Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - Capital pre-trade: all have $\kappa = 1$
- Efficient reallocation:
 - 10 low types sell to 10 of the high types

How are Terms of Trade Determined?

- Intuitive example:
 - \circ Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - \circ Capital pre-trade: all have $\kappa = 1$
- Price leaves high types indifferent between:
 - \circ Trading, with $\kappa = 2$ post-trade
 - \circ Not trading, with $\kappa = 1$ post-trade

Equilibrium Policy Functions

- Intuitive example:
 - \circ Productivity types: 20 with $z_H = 1$, 10 with $z_L = 0$
 - \circ Capital pre-trade: all have $\kappa = 1$
- Capital allocations: $k^m(s_H, s_L) = 2, k^m(s_L, s_H) = 0$
- Prices: $p^m(s_H, s_L) = 1, p^m(s_L, s_H) = -1$
- Choice probabilities:

$$\lambda(s_H|s_L) = 1, \ \lambda(s_L|s_H) = 1/2, \ \lambda_o(s_L) = 0, \ \lambda_o(s_H) = 1/2$$

More Generally Given (ϕ, V)

- Who trades with whom?
 - Solve planner problem maximizing total gains
- How are terms of trade determined?
 - Compute shadow prices from planner problem
- Can solve dynamic program iteratively
 - \circ Update: $(\phi, V) \to \text{static planner} \to (\phi, V)$

Static Planner Problem

• Let $X(s, \tilde{s})$ be match surplus given by

$$\max_{\kappa^m \in \{\kappa(s) + \kappa(\tilde{s}), 0\}} \left\{ V([z(s), \kappa^m]) + V([z(\tilde{s}), \kappa(s) + \kappa(\tilde{s}) - \kappa^m]) \right\} - V(s) - V(\tilde{s})$$

• Define total gains $Q(\phi)$ as

$$Q(\phi) = \max_{\pi \ge 0} \sum_{s, \tilde{s}} \pi(s, \tilde{s}) X(s, \tilde{s})$$

s.t.
$$\sum_{\tilde{s}} \pi(s, \tilde{s}) + \pi(s, 0) = \phi(s)/2 \quad \forall s \quad [\mu^a(s)]$$

$$\sum_{\tilde{s}} \pi(\tilde{s}, s) + \pi(0, s) = \phi(s)/2 \quad \forall s \qquad [\mu^b(s)]$$

Deliverables from Planner Problem

• Multipliers $\mu = \mu^a = \mu^b$ capture gains from trade

$$\mu(s) = \frac{\partial Q}{\partial \phi(s)}$$

• Prices implement optimal gains from trade:

$$\underbrace{\mu(s)}_{\text{social}} = \underbrace{V([z, \kappa^m(s, \tilde{s})]) - V(s) - p^m(s, \tilde{s})}_{\text{=private gains}}$$

• Updates of ϕ , V are then easy to compute

Properties of Equilibrium

• Competitive allocations maximize

$$\int e^{-rt} \sum_{s} [y(s) - C(\theta(s, t)) - m(t)c_{e}] \phi(s, t) dt$$

$$\Rightarrow \text{ achieves efficiency}$$

 \bullet Competitive prices independent of z

$$p^m(s,\tilde{s}) = \mathcal{P}(\kappa(\tilde{s}))$$

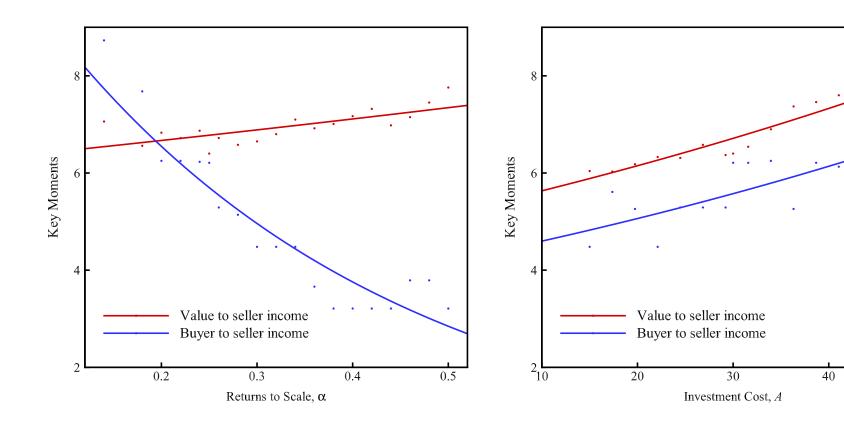
 \Rightarrow same good sold at same price

• Bilateral trades are pairwise stable

 $\not\equiv$ feasible trade for (s, \tilde{s}) making pair strictly better off

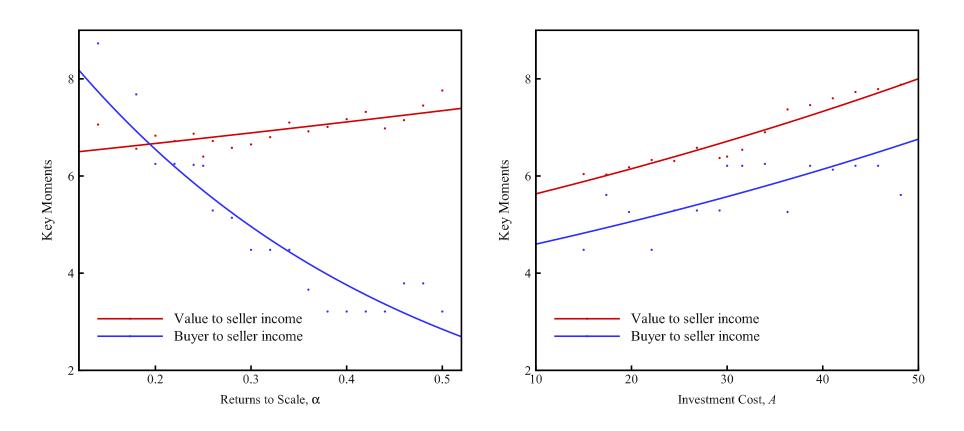
QUANTITATIVE RESULTS

Description	Values
Returns to scale	$\alpha = 0.45$
Discount rate	r = 0.06
Investment cost, $C(\theta) = A\theta^{\rho}$	$A = 30, \rho = 2.0$
Productivity	$\mu = 0, \sigma = 0.25$
Entrant distribution	mass at $z = z_0, \kappa = 1$
Death rate	$\delta = 0.10$
Depreciation rate	$\delta_{\kappa} = 0.058$
Bilateral meeting rate	$\eta = 0.20$



Identifying Key Parameters

- Key parameters
 - \circ Investment costs $C(\theta) = A\theta^{\rho}$
 - Returns to scale in $y = z\kappa^{\alpha}$
- Key moments from IRS (8594 and annual filings)
 - Ratio of business price to seller income
 - Ratio of buyer to seller income


Identifying Key Parameters

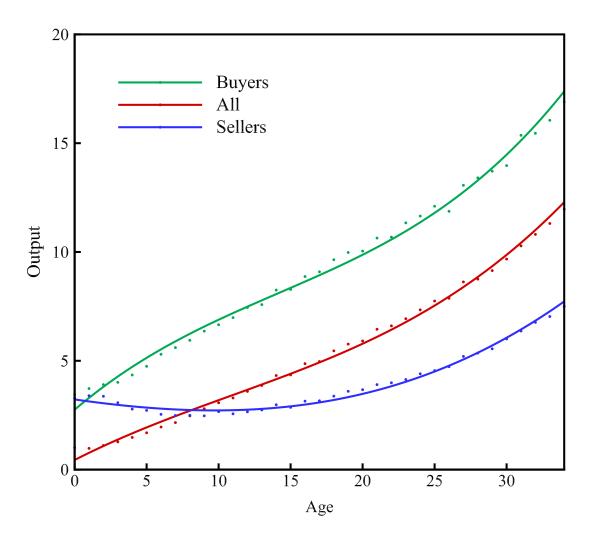
50

Identifying Key Parameters

Next: Use IRS data to validate model

Two Striking Patterns

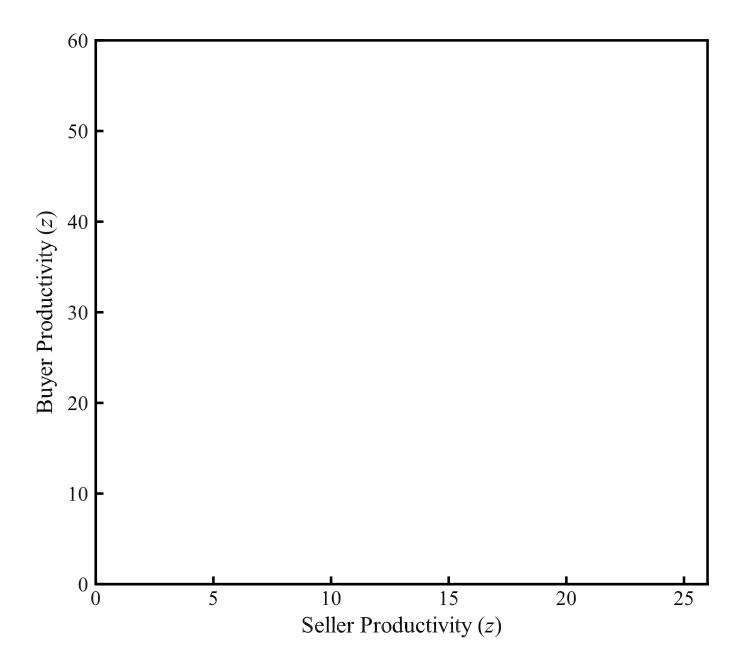
- Varying age of buyer:
 - Ratio of business price to seller income constant
 - Ratio of buyer to seller income rising
 - \Rightarrow same in model and data


Moments from the Model

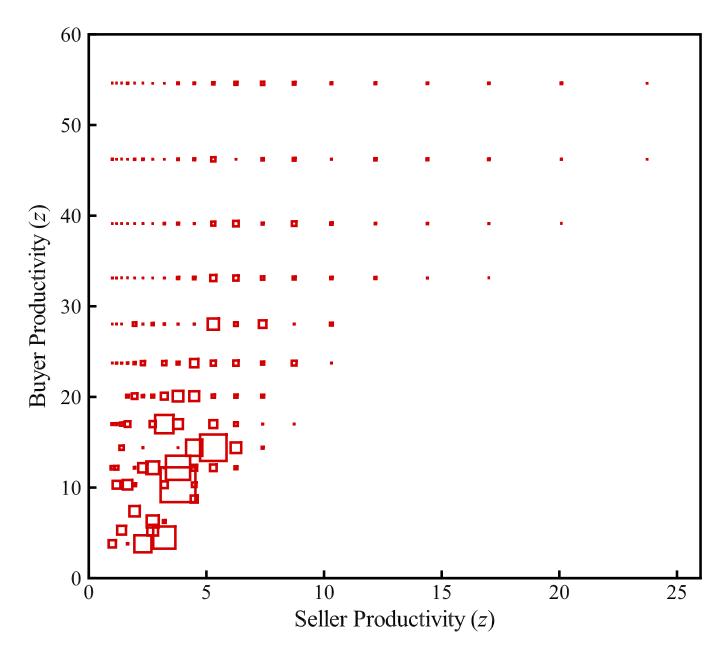
		Age (years)	
	1-5	5-10	10-25	25+
	Buyer			
Price to seller income	6.9	7.5	7.1	6.9
Relative buyer/seller size	2.8	3.8	4.9	5.3
		<u>Se</u>	<u>ller</u>	
Price to seller income	5.9	7.3	8.6	9.6
Relative buyer/seller size	2.8	3.9	4.3	3.9

- ullet Model: older sellers have high κ and low z
- Data: still investigating reasons for sale

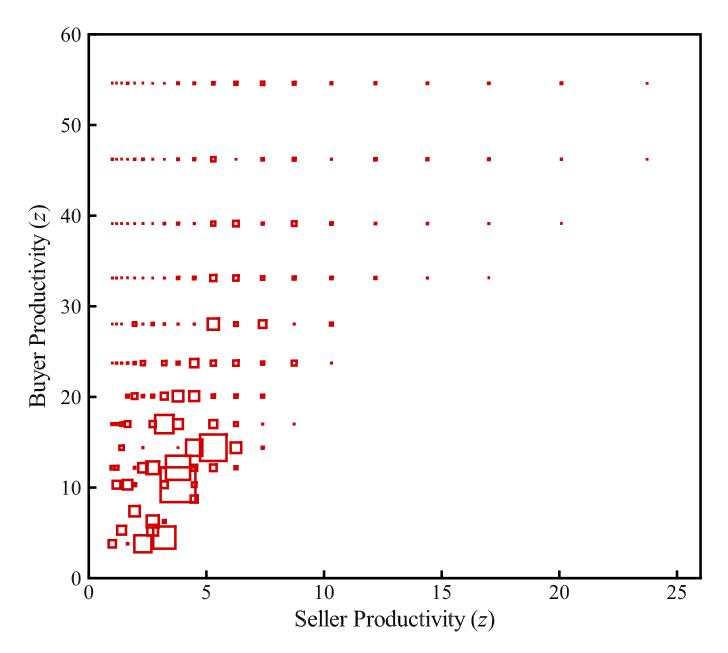
Moments from the Model



 \Rightarrow Buyers larger than average firm Sellers profile relatively flat


PATTERNS OF TRADE

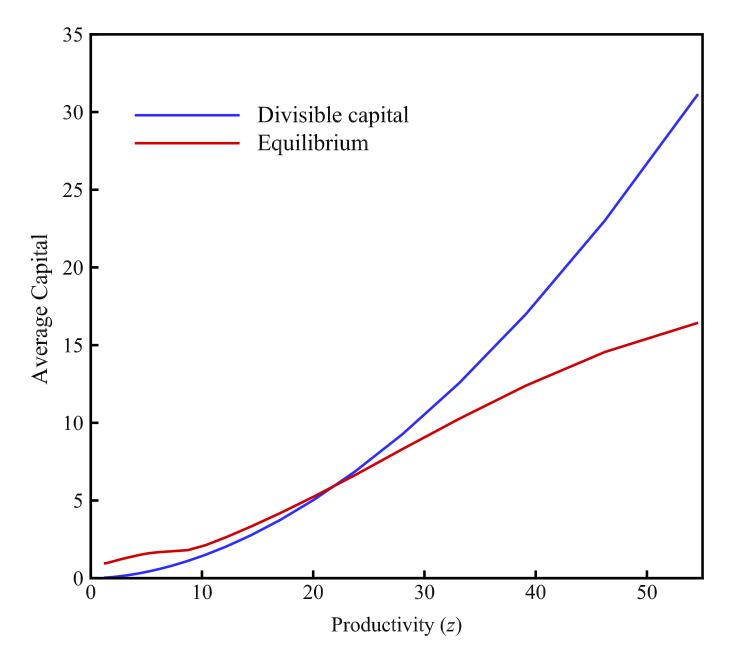
Patterns of Trade



Patterns of Trade

Capital Trades Upward in MPK Sense

Allocation of Capital


- Compare to "misallocation" literature benchmark
 - Divisible versus indivisible capital
 - Rental versus no rental markets
- Compute first-best:

$$\kappa^{FB}(s) \in \operatorname{argmax} \int z(s) [\kappa^{FB}(s)]^{\alpha} \phi(s) ds$$

$$\int \phi(s) \kappa^{FB}(s) ds = \int \phi(s) \kappa(s) ds$$

Dispersion in MPKs without Frictions

- Finance textbook: present value of owner dividends
- SCF survey: price if sold business today
- \Rightarrow Both have clear model counterparts

- Finance textbook: present value of owner dividends, V(s)
- SCF survey: price if sold business today, $\mathcal{P}(\kappa(s))$

Productivity Level (z)

Transferable Share $\mathcal{P}(\kappa(s))/V(s)$

Income Yield $[y(s) - C(\theta(s))]/V(s)$

Productivity Level (z)	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	
2	0.50	
4	0.44	
8	0.30	
40	0.34	

Productivity Level (z)	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	-0.09
2	0.50	-0.03
4	0.44	0.04
8	0.30	0.07
40	0.34	0.16

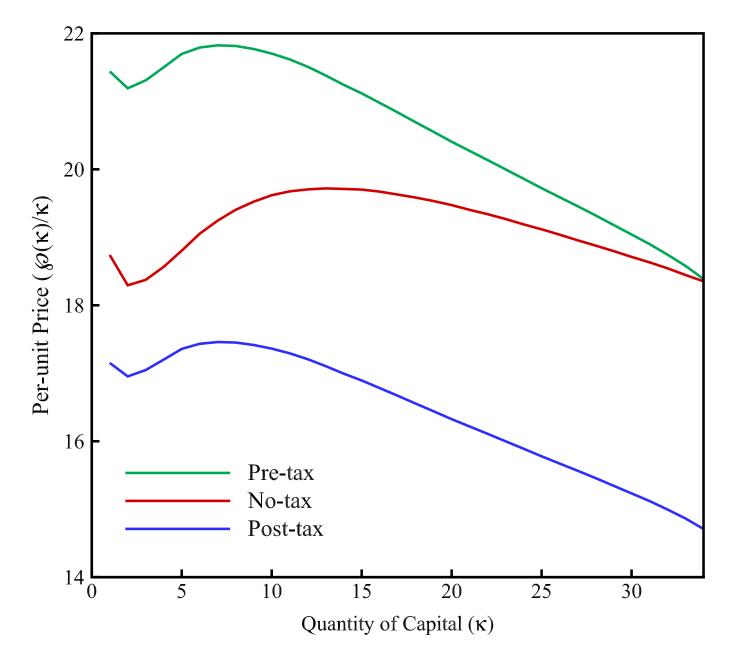
Productivity Level (z)	Transferable Share $\mathcal{P}(\kappa(s))/V(s)$	Income Yield $[y(s) - C(\theta(s))]/V(s)$
1	0.51	-0.09
2	0.50	-0.03
4	0.44	0.04
8	0.30	0.07
40	0.34	0.16

 $[\]Rightarrow$ Significant transferable share and heterogeneity in returns

TAXING CAPITAL GAINS

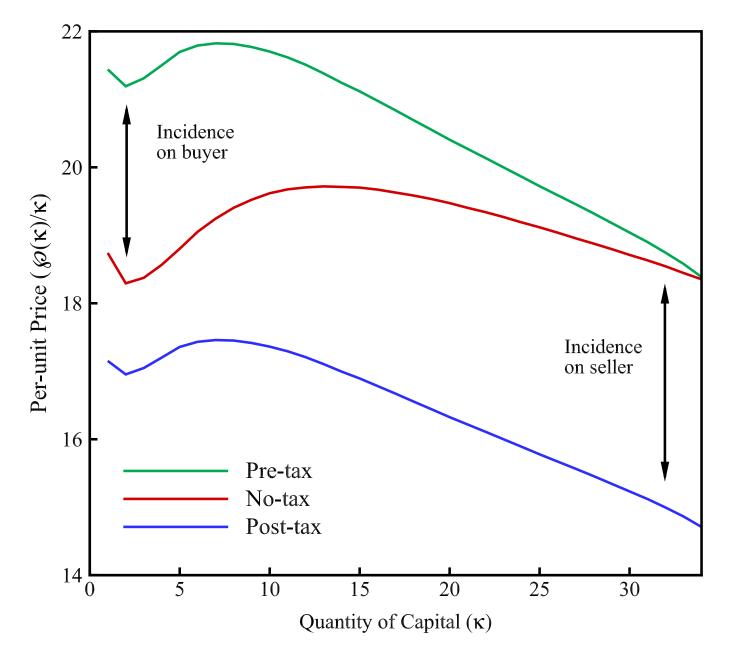
Capital Gains Tax

- Introduce $\tan \tau$ on gains
 - \circ Seller receives $(1-\tau)p^m(s,\tilde{s})$
 - \circ Government receives $\tau p^m(s, \tilde{s})$
- Positive tax base due to κ (not in Hopenhayn)



Effects of Tax

- Fewer trades (obvious)
 - Tax eliminates trades where gains are small
- Lower investment and entry (obvious)
 - Tax introduces lock-in effect
- Heterogeneity in tax incidence
 - Larger on buyer if transacted quantity small
 - Larger on seller if transacted quantity large



Heterogeneity in Tax Incidence

Heterogeneity in Tax Incidence

Next Steps

- Theory: add curvature and financing constraints
- Estimation: continue work with IRS data
- Applications: continue work on intangible capital
 - Reallocation
 - Valuation
 - Taxation

APPENDIX

Dual Planner Problem

$$Q(\phi) = \max_{\mu^{a}, \mu^{b} \ge 0} \frac{1}{2} \sum_{s} (\mu^{a}(s) + \mu^{b}(s)) \phi(s)$$
s.t. $\mu^{a}(s) + \mu^{b}(s) \ge X(s, \tilde{s}) \quad \forall s, \tilde{s} \quad [\pi(s, \tilde{s})]$

⇒ Multipliers in primal are choice variables in dual

With Non-transferable Utility

- Add extreme value "preference shock" (Galichon et al. 2019)
- Assume all types buy/sell from all others
- \bullet Modify slightly the computation of gains to trade W
- Drive preference shock to 0

Galichon-Kominers-Weber Tricks

• After-trade values for buyers (v_b) and sellers (v_s)

$$v_b(s, \tilde{s}) = V([z, \kappa(s) + \kappa(\tilde{s})]) - p^m(s, \tilde{s})$$
$$v_s(s, \tilde{s}) = V(\tilde{s}, 0) + (1 - \tau)p^m(s, \tilde{s})$$

Matching probability

$$\lambda(s, \tilde{s}) = \exp([v_b(s, \tilde{s}) - W(s)]/\sigma)$$
$$\lambda(\tilde{s}, s) = \exp([v_s(\tilde{s}, s) - W(s)]/\sigma)$$

• Gains from trade

$$W(s;\lambda) = \sum_{\tilde{s}} \left\{ V([z, \kappa^m(s, \tilde{s})]) - V(s) - p^m(s, \tilde{s}) \right\} \lambda(s, \tilde{s})$$
$$-\sigma \lambda(s, \tilde{s}) \log \lambda(s, \tilde{s})$$