

Business Income Underreporting and Public Finance

A. Bhandari, D. Evans, E. McGrattan, Y. Yao

April 2024

- Net government saving ≈ -1 \$Trillion (in 2018)
 - Current receipts: 5.6T
 - Current expenditures: 6.7T

- Net government saving ≈ -1 \$Trillion
 - Current receipts: 5.6T
 - Current expenditures: 6.7T
- Untaxed business income ≈ 1 \$Trillion
 - Income reported to IRS: 3.2T
 - Estimate of true: 4.2T

- Net government saving ≈ -1 \$Trillion
 - Current receipts: 5.6T
 - Current expenditures: 6.7T
- Untaxed pass-through income ≈ 700 \$Billion
 - Income reported to IRS: 1.3T
 - Estimate of true: 2T

- Net government saving $\approx -5.4\%$ GDP
 - Current receipts: 27%
 - Current expenditures: 33%
- Untaxed pass-through income $\approx 3.4\%$ GDP
 - Income reported to IRS: 6.4%
 - Estimate of true: 9.8%

- Net government saving $\approx -5.4\%$ GDP
 - Current receipts: 27%
 - Current expenditures: 33%
- Untaxed pass-through income $\approx 3.4\%$ GDP
 - Income reported to IRS: 6.4%
 - Estimate of true: 9.8%

⇒ Prompting more funding for IRS enforcement

Greater IRS Enforcement

- Inflation Reduction Act:
 - o 80 billion over 10 years
 - Enforcement budget roughly doubled
- Predicted returns on investment (ROI):
 - o CBO/JCT (2021): 5–9\$
 - Boning et al (2023): 5–12\$

This Paper

- First step before using IRS micro data
 - Use public IRS compliance data (TCMP/NRP)
 - Develop dynamic GE model of tax evasion
 - Compare higher tax vs enforcement counterfactuals
- Useful for next steps
 - Data: expand collection to business filings
 - Theory: add transition dynamics and welfare analysis

What's New?

- Factors relevant for dynamics of tax evasion
 - Loss of *sweat capital* (eg, reputation, brands, etc)
 - Recovery of back taxes
- Why relevant?
 - Impacts business dynamics and productivity
 - Amplifies precautionary motives
 - \Rightarrow Economies with higher tax vs enforcement different

IRS Compliance Data

IRS Compliance Data

- Tax gap = random audits + DCE adjustments
- Random audits:
 - Taxpayer compliance measurement program, 1962–88
 - National research program, 2000–present
- Detection controlled estimation (DCE) adjustments:
 - Scale up recommendations of all examiners
 - Use data from examiners with largest adjustments

How Big is the Tax Gap?

Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9

What is the Main Source of the Gap?

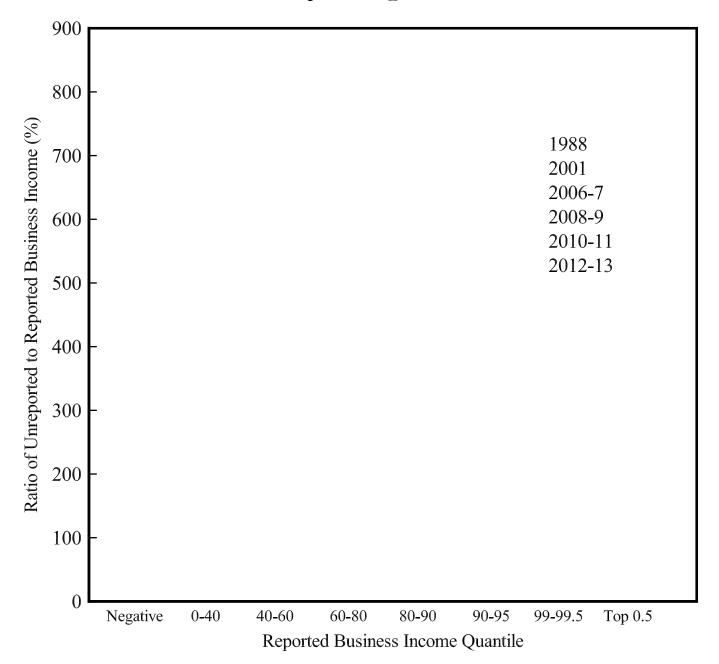
Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9

What is the Main Source of the Gap?

Gross tax gap	2001	2011	2021
Amount:			
billions of 2023\$	567	575	763
% of GDP	3.3	2.7	2.9
Source share:			
Underreporting	83	80	80
Underpayment	10	12	10
Nonfiling	7	8	11

What is the Main Source of Underreporting?

Source share	2001	2011	2021
Business	62	55	55
Wages & salaries	4	3	2
Other	34	42	43

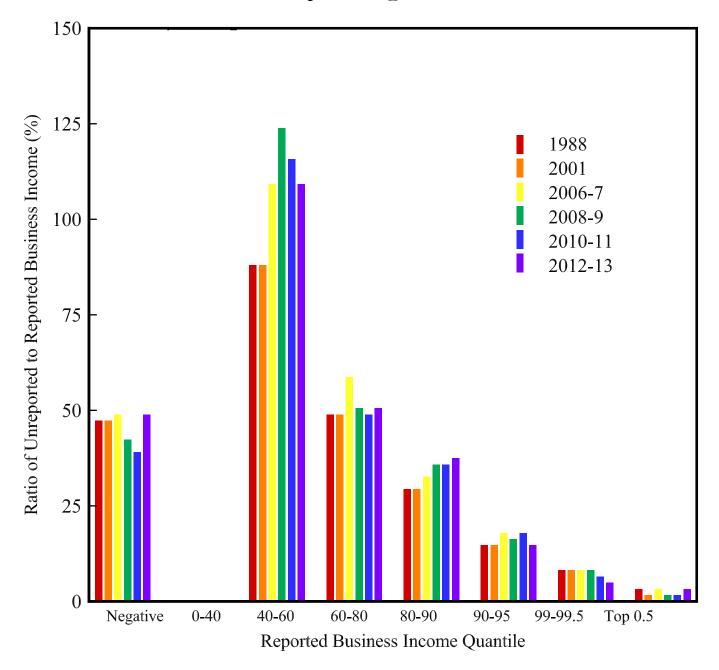


How Widespread is Cheating?

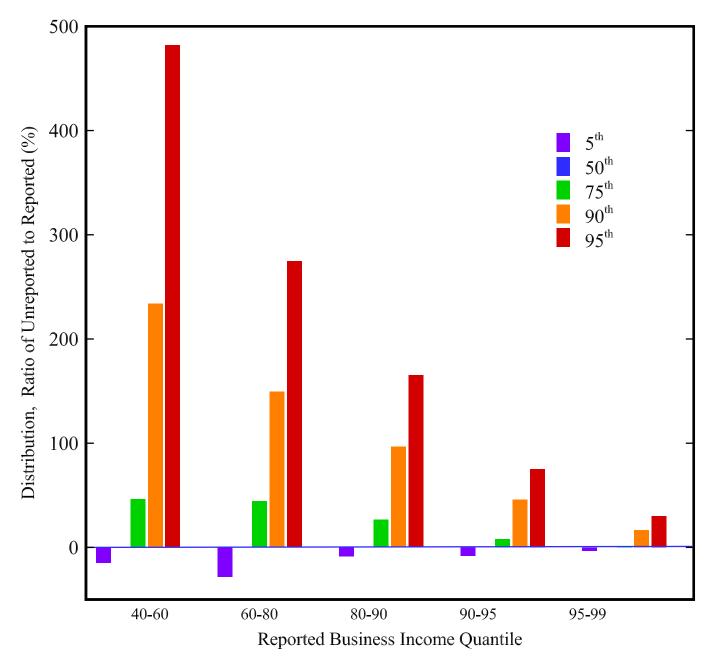
- Evidence from 2 NRP random-audit studies (no DCE)
 - All owners—ranked by reported incomes
 - Sole proprietors—ranked by understated tax
- Reveal same patterns
 - Cheating is widespread
 - Few owners account for most cheating



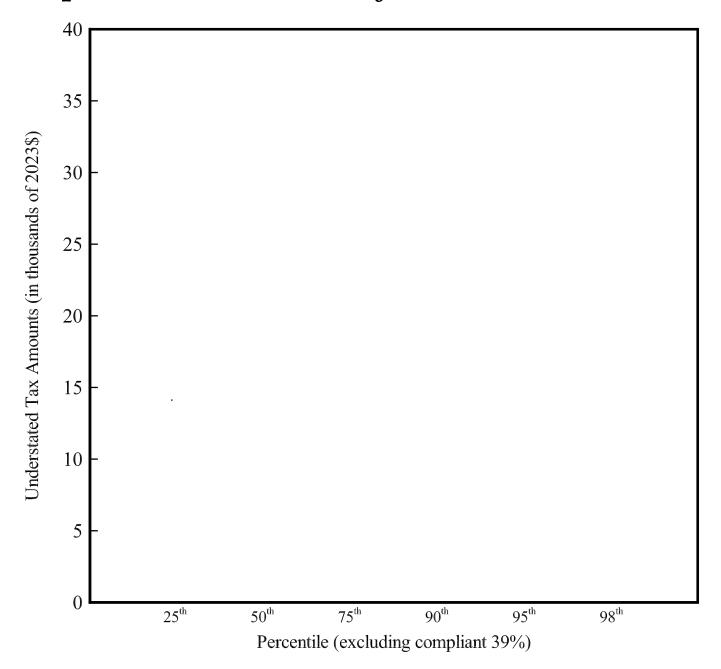
Owners Ranked by Reported Incomes



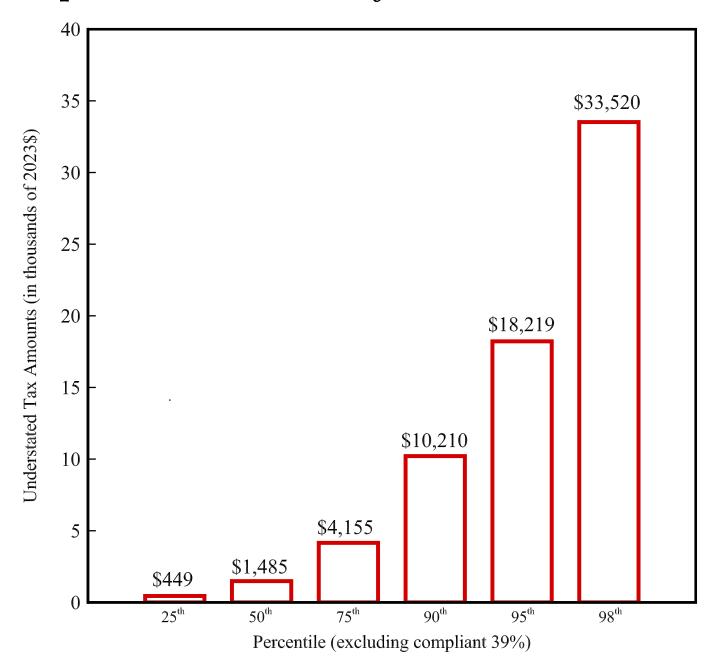
Owners Ranked by Reported Incomes



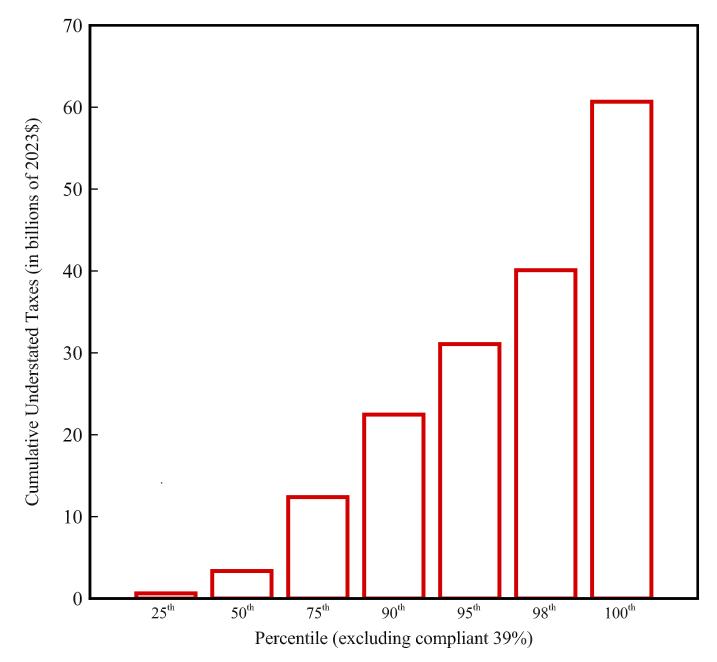
Owners Ranked by Reported Incomes



Distribution of U-to-R Ratios



Proprietors Ranked by Understated Taxes



Proprietors Ranked by Understated Taxes

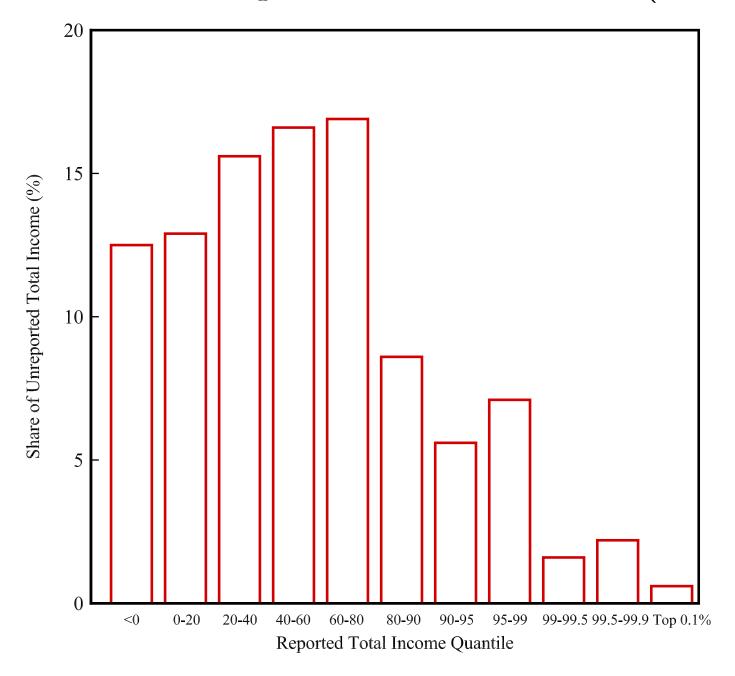
Cumulated Understated Taxes

Nonpecuniary Motives for Compliance

- TAS surveys intended to elicit nonpecuniary motives
- How?
 - Construct samples of sole proprietors
 - Use DIF scores indicating likelihood of audit
 - Group proprietors by DIF score
 - Compare responses of low-DIF and high-DIF groups

TAS Survey Main Results

- Compare lowest and highest compliance groups
- Where similar:
 - Agree tax rules complicated
 - Know consequences of underreporting
 - Profess moral obligation to pay taxes
- Where different:
 - High-compliance more trusting in IRS/govt
 - High-compliance rely more on preparers



Does Evasion Occur Across Income Distribution?

- Evidence from NRP random-audit studies (no DCE)
 - Available publicly only for total incomes
 - Shows underreporting across the distribution
- Estimates of very top depend on DCE adjustments

Shares of Unreported Total Incomes (no DCE)

Recap: Lessons from IRS Data

- Gross tax gap large and $\approx 3\%$ of GDP over time
- Underreporting is main source of tax gap
- Underreporting by business owners is most of that
- Underreporting is widespread but concentrated
- Underreporting occurs across the income distribution
- Economic deterrence is only one factor driving compliance

Theory

- Occupational choice: paid- or self-employment
- Taxpayer types: always compliant or not
- Noncompliance source: business income underreporting
- Dynamics of tax evasion:
 - o Loss of reputation, business brands, customers
 - Recovery of back taxes

⇒ Extends standard model of economic deterrence

Occupational Choice

• Choose business b or work w

$$V(s) = \max_{x} \{V^b(s), V^w(s)\}$$

$$V^i(s) = \max_{x} \{U(c, \ell) + \beta \sum_{z', \epsilon'} \pi(z', \epsilon' | z, \epsilon) \mathcal{V}(s')\}$$

where $s = (a, \kappa, d, z, \epsilon)$ and

- a: financial assets
- $\circ \kappa$: sweat capital, eg, reputation, brands, etc
- o d: back taxes, eg, accumulated unpaid taxes
- \circ z: productivity in self-employment
- \circ ϵ : productivity in paid-employment
- $\circ \ x = [a', \kappa', d', c_p, c_c, \ell, k_p, h_p, h_\kappa, e, c^r, y_b^r]$

$$\mathcal{V}(a', \kappa', d', z', \epsilon')$$

$$= \underbrace{(1 - \Pi(d'))V(a', \kappa', d', z', \epsilon')}_{\text{no audit}}$$

$$+ \underbrace{\Pi(d')V(a' - f_a(d'), f_r(\kappa'), 0, z', \epsilon')}_{\text{audit}}$$

$$\mathcal{V}(a', \kappa', d', z', \epsilon')$$

$$= \underbrace{(1 - \Pi(d'))V(a', \kappa', d', z', \epsilon')}_{\text{no audit}}$$

$$+ \underbrace{\Pi(d')V(a' - f_a(d'), f_r(\kappa'), 0, z', \epsilon')}_{\text{audit}}$$

Probability of audit

$$\mathcal{V}(a', \kappa', d', z', \epsilon')$$

$$= \underbrace{(1 - \Pi(d'))V(a', \kappa', d', z', \epsilon')}_{\text{no audit}}$$

$$+ \underbrace{\Pi(d')V(a' - f_a(d'), f_r(\kappa'), 0, z', \epsilon')}_{\text{audit}}$$

Probability of audit and fines depend on d'

$$\mathcal{V}(a', \kappa', d', z', \epsilon')$$

$$= \underbrace{(1 - \Pi(d'))V(a', \kappa', d', z', \epsilon')}_{\text{no audit}}$$

$$+ \underbrace{\Pi(d')V(a' - f_a(d'), f_r(\kappa'), 0, z', \epsilon')}_{\text{audit}}$$

Audit results in reputational losses

Business Owner's Technologies

- Goods and services: $y_p = z f_p(\kappa, k_p, h_p)$
 - $\circ z = \text{productivity in self-employment}$
 - $\circ \kappa = \text{sweat capital}$
 - \circ k_p = rented physical capital
 - \circ $h_p = \text{owner time in production}$
- Sweat investment: $x_{\kappa} = f_{\kappa}(h_{\kappa}, e)$
 - $\circ h_{\kappa} = \text{owner time in brand building}$
 - $\circ e = \text{owner expenses}$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Borrowing

$$a' \geq f_a(d')$$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Budget

$$a' = [(1+r)a+y_b-T^b(y_b^r)-(1+\tau_c)(c_c+pc_p)+\chi]/(1+\gamma)$$

$$\uparrow \qquad \nearrow$$

next period and current assets

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

true and reported income

$$y_b = py_p - (r+\delta)k_p - e, y_b^r = y_b - (1+\tau_c)c^r$$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

\(\gamma\)

taxes on business and consumption

• Budget

$$a' = [(1+r)a+y_b-T^b(y_b^r)-(1+\tau_c)(c_c+pc_p)+\chi]/(1+\gamma)$$

$$\uparrow \nearrow$$
goods produced by C-corps
and pass-thrus, $c = \cos(c_c, c_p)$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

$$\uparrow$$
transfers

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

sweat investment (shown earlier)

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

current misreporting: $y_b - y_b^r = (1 + \tau_c)c^r$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Budget

$$a' = [(1+r)a + y_b - T^b(y_b^r) - (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$

• Sweat capital

$$\kappa' = [(1 - \delta_{\kappa})\kappa + f_{\kappa}(h_{\kappa}, e)]/(1 + \gamma)$$

• Back taxes

$$d' = [(1 - \delta_d)d + f_d(c^r)]/(1 + \gamma)$$

• Borrowing

$$a' \geq f_a(d')$$

Close the Model

- Standard dynamic program for workers, except
 - Sweat capital decays without use
 - Back taxes not forgiven
- Standard dynamic program for C corporations
- Public financing (G&S plus transfers) with
 - Taxes on consumption and all forms of income
 - Fines if caught evading taxes

(Details in slide deck appendix)

Qualitative Predictions

Predictions of Increased Enforcement

- Lower precautionary motives
 - Financial assets used to pay future fines
 - Borrowing constraints less binding
- Lower sweat capital stocks
 - Brand assets lost with exposed tax evasion
 - Business ages lower with more exit/entry
 - Business productivity higher due to selection

Quantitative Results

Key Compliance Parameters

- Audit probability, $\Pi(d') = \pi$, π varied
- Fines, $f_a(d) = \bar{p}d$, $\bar{p} = 4$
- Reputational cost, $f_r(\kappa) = 0$ if non-compliant
- Underreporting, $f_d(c^r) = \tau_b(1+\tau_c)c^r$, $\tau_c = .065$, $\tau_b = .4$
- Back taxes depreciation, $\delta_d = 20\%$

Note: See paper for full calibration

Comparative Statics

- Vary audit probability π
- Record impacts for owners by type

Fraction of Population

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant				
Compliant				
All owners				

Fraction of Population

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	-21			
Compliant	11			
All owners	-6			

Fraction of Population

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	-21	-35	-60	-70
Compliant	11	23	43	45
All owners	-6	- 9	-12	-17

 \Rightarrow Large compositional shift

Financial Assets (a)

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	-4	- 9	-29	-57
Compliant	5	12	28	39
All owners	-10	-18	-30	-36

 \Rightarrow Large drop in precautionary saving

Productivity (z)

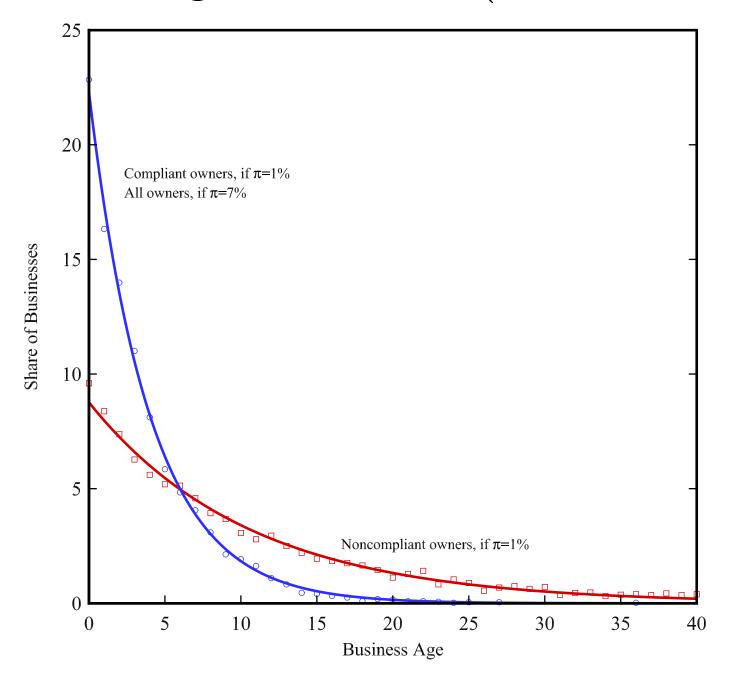
	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	9	16	25	27
Compliant	0	0	-1	-2
All owners	6	9	10	11

 \Rightarrow Large increase in productivity due to selection

Sweat Capital (κ)

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	- 9	-14	-37	-31
Compliant	12	13	21	21
All owners	-4	- 9	-15	-12

 \Rightarrow Large drop in business assets with more audits


Business Age

	% Change from $\pi = 1\%$ to			
Owner type:	2%	3%	5%	7%
Non-compliant	-33	-50	-64	-68
Compliant	5	8	15	18
All owners	-30	-42	-49	-49

 \Rightarrow Large drop in age with more audits, less capital

Business Age Distributions (π =1% and 7%)

Distributional Impacts

- Two rankings of interest:
 - By misreporting rates: $100(y_b y_b^r)/y_b$
 - \circ By business receipts: py_p
- Looking for patterns of underreporting
 - Few owners account for most cheating
 - Cheating occurs across the income distribution

Rank Owners by Underreporting $(\pi = 2\%)$

% of Income Underreported

% Deviations	None	<80	80-90	90-99	>99
Business age	-37	-18	19	4	67
Financial asset	s - 40	-63	-30	-4	79
Sweat capital	-21	63	59	51	23
Productivity	7	11	14	13	-16
True income	-10	111	107	93	-7
% Owners	59	2	2	4	33

 $[\]Rightarrow$ Concentrated, but too many able to get income to 0

Rank Owners by Receipts ($\pi = 2\%$)

Q	uint	ciles	of	$R\epsilon$	eceip	ots

% Deviations	(1)	(2)	(3)	(4)	(5)
Business age	-21	6	-21	14	21
Financial assets	19	12	-1	-6	-23
Sweat capital	-57	-13	-15	36	49
Productivity	-21	-17	10	14	14
True income	-113	-68	5	72	104
% Underreporting	32	47	26	36	57

[⇒] Cheating occurs throughout the size distribution

Policy Counterfactuals

- Two ways to raise same revenues
 - Higher enforcement: $\pi = 2\% \rightarrow \pi = 5\%$
 - Higher tax rate on business: $\tau_b = 40\% \rightarrow \tau_b = 47\%$
- Raise revenues by 3% relative to $\pi = 2, \tau_b = 40$ baseline

Enforcement vs Taxation

% Change in:	More Audits π =5 vs 2%	Higher Tax $\tau_b=47 \text{ vs } 40\%$
# of Owners	-7	-4
Non-compliant	-50	12
Compliant	29	-18
Business age	-28	16
Financial assets, a	-22	14
Sweat capital, κ	-11	6
Back taxes, d	-66	44
Productivity, z	6	-3
Business income, y_b	4	4

Bottom Line

- Higher enforcement vs taxation
 - Most evident in composition of businesses/owners
 - Not evident in aggregate business income
- Need transitional dynamics to do proper welfare analysis

- Data: gather relevant IRS micro data
 - Current NRP studies only work with 1040
 - Want to expand analysis to business filings
- Theory: add transitional dynamics
 - Current analysis is steady state
 - Want to analyze Inflation Reduction provisions
 - Want to do full welfare analysis with transition

Appendix

Dynamic Program for Workers

• Workers choose $x = [a', c_p, c_c, \ell]$ to solve

$$V^{w}(s) = \max_{x} \{U(c,\ell) + \beta \sum_{z',\epsilon'} \pi(z',\epsilon'|z,\epsilon) \mathcal{V}(s')\}$$

subject to

$$a' = [(1+r)a + w\epsilon h_w - T^w(w\epsilon h_w)$$
$$- (1+\tau_c)(c_c + pc_p) + \chi]/(1+\gamma)$$
$$\kappa' = (1-\lambda_\kappa)\kappa/(1+\gamma)$$
$$d' = (1-\lambda_d)d/(1+\gamma)$$
$$1 = \ell + h_w$$

Dynamic Program for Corporations

• Corporations choose x_c, n_c to solve

$$V^{c}(k_{c}) = \max \left\{ (1 - \tau_{d})d_{c} + \frac{1 + \gamma}{1 + r}V^{c}(k'_{c}) \right\}$$

subject to

$$d_c = AF(k_c, n_c) - wn_c - x_c - \tau_p(y_c - wn_c - \delta_k k_c)$$

$$x_c = (1+\gamma)k_c' - (1-\delta_k)k_c$$

Government Budget Constraint

$$g + \chi + (r - \gamma)b = \tau_c \int (c_{ci} + pc_{pi}) di +$$

$$+ \tau_d (y_c - wn_c - (\gamma + \delta_k)k_c - \tau_p (y_c - wn_c - \delta_k k_c))$$

$$+ \tau_p (y_c - wn_c - \delta_k k_c) + \int T^n (w\epsilon_i n_i) di$$

$$+ \int T^b (y_{ri}^b) di + \int \mathbf{1}_i f_a(d_i) di$$